GUO Xinwei, GUO Chunxi, NIE Jianliang, WANG Haitao, TIAN Jie. Vertical Movement Model in Chinese Mainland Based on First Order Leveling Results[J]. Geomatics and Information Science of Wuhan University, 2022, 47(3): 361-368. DOI: 10.13203/j.whugis20190389
Citation: GUO Xinwei, GUO Chunxi, NIE Jianliang, WANG Haitao, TIAN Jie. Vertical Movement Model in Chinese Mainland Based on First Order Leveling Results[J]. Geomatics and Information Science of Wuhan University, 2022, 47(3): 361-368. DOI: 10.13203/j.whugis20190389

Vertical Movement Model in Chinese Mainland Based on First Order Leveling Results

Funds: 

The National Natural Science Foundation of China 41774004

The National Natural Science Foundation of China 41574003

The National Natural Science Foundation of China 41904040

More Information
  • Author Bio:

    GUO Xinwei, master, engineer, specializes in geodetic data processing. E-mail: xw_guo@126.com

  • Received Date: March 19, 2020
  • Published Date: March 04, 2022
  •   Objectives  The national first order leveling results are valuable data for studying the vertical movement of crust in Chinese Mainland. The trend of vertical movement in the past 50 years is analyzed with three period results of first order leveling network of China.
      Methods  Firstly, on the same reference datum, a static adjustment method is used to calculate the height of the first order leveling points. By analyzing the location, height difference and record of leveling points, the coincidence points of different period results are obtained. Then the velocity of leveling coincidence points can be calculated by height difference and time span. Secondly, the residual distribution of checking points and fitting points is used to evaluate the pros and cons of the interpolation methods, such as Hardy function interpolation, Kriging interpolation and inverse distance weighted method, one of which is determined to establish vertical movement model. Finally, the vertical movement model in Chinese Mainland is obtained with the method of Kriging interpolation.
      Results  The residual distribution of checking points and fitting points shows that the fitting precision of Hardy function is slightly lower but more stable than other methods. And the precision of inverse distance weighted method is slightly higher, but there are some outlier in the fitting results. The valid fitting region of triangulation with linear interpolation is the smallest convex polygon consisting of the outermost leveling points, so the blank area near the boundary of Chinese Mainland is existed. The precision is basically equal between Kriging interpolation and minimum curvature interpolation, but from the perspective of the residual, Kriging interpolation is slightly better.
      Conclusions  From the vertical movement model, the characteristic of vertical movement is qualitatively analyzed: In the past 50 years, the North China Plain, Jiangsu-Shanghai Area, Fen-Wei Basin, Xinjiang and Hainan are subsiding. Among them, the North China Plain and Jiangsu-Shanghai Area are severe subsiding condition with the velocity of 40.4±1.4 mm/a. The south of Tibet, North-East China, Fujian and north of Shaanxi are uplifting, and the trend of uplifting is kind of fierce in the south of Tibet and east of North-East China, the velocity of uplift is 5.4±2.5 mm/a. Other areas such as South China are relatively stable.
  • [1]
    冯浩鉴, 顾旦生, 张莉, 等. 中国东部地区地壳垂直运动规律及其机制研究[J]. 测绘学报, 1998, 27(1): 16-23 doi: 10.3321/j.issn:1001-1595.1998.01.003

    Feng Haojian, Gu Dansheng, Zhang Li, et al. The Research on the Earth Crust Vertical Movement Characteristic and Mechanism in Eastern China[J]. Acta Geodaetica et Cartographic Sinica, 1998, 27(1): 16-23 doi: 10.3321/j.issn:1001-1595.1998.01.003
    [2]
    陈超, 邹蓉, 刘任莉. 联合GPS和GRACE研究青藏高原南部地区垂直形变的季节性波动[J]. 武汉大学学报·信息科学版, 2018, 43(5): 669-675 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201805005.htm

    Chen Chao, Zou Rong, Liu Renli. Vertical Deformation of Seasonal Hydrological Loading in Southern Tibet Detected by Joint Analysis of GPS and GRACE[J]. Geomatics and Information Science of Wuhan University, 2018, 43(5): 669-675 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201805005.htm
    [3]
    Teferle F N, Bingley R M, Williams S D, et al. Using Continuous GPS and Absolute Gravity to Separate Vertical Land Movements and Changes in Sea-Level at Tide-Gauges in the UK[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2006, 364(1841): 917-930
    [4]
    张永红, 吴宏安, 康永辉. 京津冀地区1992—2014年三阶段地面沉降InSAR监测[J]. 测绘学报, 2016, 45(9): 1050-1058 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201609008.htm

    Zhang Yonghong, Wu Hong ' an, Kang Yonghui. Ground Subsidence over Beijing-Tianjin-Hebei Region During Three Periods of 1992 to 2014 Monitored by Interferometric SAR[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(9): 1050-1058 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201609008.htm
    [5]
    国家地震局《中国岩石圈动力学地图集》编委会. 中国岩石圈动力学地图集[M]. 北京: 中国地图出版社, 1989

    Editorial Committee of Chinese Lithosphere Dynamic Atlas of National Earthquake Administration. Chinese Lithosphere Dynamic Atlas[M]. Beijing: China Cartographic Publishing House, 1989
    [6]
    赖锡安, 黄立人, 徐菊生, 等. 中国大陆现今地壳运动[M]. 北京: 地震出版社, 2004

    Lai Xi'an, Huang Liren, Xu Jusheng, et al. PresentDay Crustal Movement in China Constrained[M]. Beijing: Seismological Press, 2004
    [7]
    董鸿闻, 顾旦生, 李国智, 等. 中国大陆现今地壳垂直运动研究[M]. 西安: 西安地图出版社, 2002

    Dong Hongwen, Gu Dansheng, Li Guozhi, et al. Research on Vertical Recent Crustal Movement of the Mainland of China[M]. Xi'an: Xi'an Cartographic Publishing House, 2002
    [8]
    黄立人, 陶本藻, 赵承坤. 多面函数拟合在地壳垂直运动研究中的应用[J]. 测绘学报, 1993, 22(1): 25-32 doi: 10.3321/j.issn:1001-1595.1993.01.004

    Huang Liren, Tao Benzao, Zhao Chengkun. The Application of Fitting Method of Multiquadric Funotions Inresearch on Crustal Vertigal Movement[J]. Acta Geodaetica et Cartographic Sinica, 1993, 22(1): 25-32 doi: 10.3321/j.issn:1001-1595.1993.01.004
    [9]
    崔笃信, 刘文义. 经验正交函数分解在地壳垂直形变场分析中的应用[J]. 地震, 2000, 20(3): 82-86 doi: 10.3969/j.issn.1000-3274.2000.03.013

    Cui Duxin, Liu Wenyi. Application of Empirical Orthogonal Function Resolution to Analysis of Crustal Vertical Deformation Field[J]. Earthquake, 2000, 20(3): 82-86 doi: 10.3969/j.issn.1000-3274.2000.03.013
    [10]
    张勤, 范一中, 赵超英. 基于通量均衡基准的地壳垂直形变场分析模型[J]. 武汉大学学报·信息科学版, 2004, 29(3): 231-234 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200403011.htm

    Zhang Qin, Fan Yizhong, Zhao Chaoying. Analysis Model of Crustal Vertical Movement Based on the Flux Isostasy[J]. Geomatics and Information Science of Wuhan University, 2004, 29(3): 231-234 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200403011.htm
    [11]
    黄立人. 由复测精密水准用富氏分析法提取地壳垂直运动信息可能性的探讨[J]. 测绘学报, 1990, 19(4): 257-266 doi: 10.3321/j.issn:1001-1595.1990.04.003

    Huang Liren. Research on the Possibility of Extracting Information About the Crustal Vertical Movements from Precise Relevelings by Fourier-Analysis Method[J]. Acta Geodaetica et Cartographic Sinica, 1990, 19(4): 257-266 doi: 10.3321/j.issn:1001-1595.1990.04.003
    [12]
    刘经南, 姚宜斌, 施闯, 等. 中国大陆现今垂直形变特征的初步探讨[J]. 大地测量与地球动力学, 2002, 22(3): 1-5 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB200203000.htm

    Liu Jingnan, Yao Yibin, Shi Chuang, et al. Preliminary Research on Characteristic of Present-Day Vertical Deformation of China Mainland[J]. Crustal Deformation and Earthquake, 2002, 22(3): 1-5 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB200203000.htm
    [13]
    Kamil K, Jacek R, Marek M. Analysis of Vertical Movement Modeling through Various Interpolation Techniques[J]. Research Gate, 2010, 7(4): 399-408
    [14]
    王文利, 郭春喜, 丁黎, 等. 全国一等水准点高程近20年变化分析[J]. 测绘学报, 2019, 48(1): 1-8 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201901002.htm

    Wang Wenli, Guo Chunxi, Ding Li, et al. Elevation Change Analysis of the National First Order Leveling Points in Recent 20 Years[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(1): 1-8 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201901002.htm
    [15]
    刘经南, 姚宜斌, 施闯. 中国地壳运动整体速度场模型的建立方法研究[J]. 武汉大学学报·信息科学版, 2002, 27(4): 331-336 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200204000.htm

    Liu Jingnan, Yao Yibin, Shi Chuang. Method for Establishing the Speed Field Model of Crustal Movement in China[J]. Geomatics and Information Science of Wuhan University, 2002, 27(4): 331-336 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200204000.htm
    [16]
    曾安敏, 秦显平, 刘光明, 等. 中国大陆水平运动速度场的多面函数模型[J]. 武汉大学学报·信息科学版, 2013, 38(4): 394-398 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201304004.htm

    Zeng Anmin, Qin Xianping, Liu Guangming, et al. Hardy Multi-Quadric Fitting Model of Chinese Mainland Horizontal Crustal Movement[J]. Geomatics and Information Science of Wuhan University, 2013, 38(4): 394-398 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201304004.htm
    [17]
    刘晓霞, 江在森, 武艳强. Kriging方法在GPS速度场网格化和应变率场计算中的适用性[J]. 武汉大学学报·信息科学版, 2014, 39(4): 457-461

    Liu Xiaoxia, Jiang Zaisen, Wu Yanqiang. The Applicability of Kriging Interpolation Method in GPS Velocity Gridding and Strain Calculating[J]. Geomatics and Information Science of Wuhan University, 2014, 39(4): 457-461
    [18]
    樊子德, 李佳霖, 邓敏. 顾及多因素影响的自适应反距离加权插值方法[J]. 武汉大学学报·信息科学版, 2016, 41(6): 842-847 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201606020.htm

    Fan Zide, Li Jialin, Deng Min. An Adaptive InverseDistance Weighting Spatial Interpolation Method with the Consideration of Multiple Factors[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 842-847 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201606020.htm
    [19]
    王万银, 邱之云. 一种稳定的位场数据最小曲率网格化方法研究[J]. 地球物理学进展, 2011, 26(6): 2003-2010 doi: 10.3969/j.issn.1004-2903.2011.06.014

    Wang Wanyin, Qiu Zhiyun. The Research to a Stable Minimum Curvature Gridding Method in Potential Data Processing[J]. Progress in Geophysics, 2011, 26(6): 2003-2010 doi: 10.3969/j.issn.1004-2903.2011.06.014
    [20]
    Tsai V J D. Delaunay Triangulations in TIN Creation: An Overview and a Linear-Time Algorithm [J]. International Journal of Geographical Information Systems, 1993, 7(6): 501-524 doi: 10.1080/02693799308901979
  • Related Articles

    [1]LIANG Wei, XU Xin-yu, LI Jian-cheng, HUANG Jian, LI Peng-yuan, LIU Zhan-ke, CHEN Xiao-ying. Research on Determination of Gravity Field Models in Regional Area Using Airborne Gravity Data and Reference Model[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230002
    [2]LUO Zhicai, ZHONG Bo, ZHOU Hao, WU Yunlong. Progress in Determining the Earth's Gravity Field Model by Satellite Gravimetry[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10): 1713-1727. DOI: 10.13203/j.whugis20220537
    [3]SU Yong, FAN Dongming, GU Yanchao. Gravity Field Modeling Using Energy ConservationApproach and GOCE Orbits[J]. Geomatics and Information Science of Wuhan University, 2014, 39(9): 1043-1046. DOI: 10.13203/j.whugis20130029
    [4]ZHONG Zhen, LI Fei, YAN Jianguo, SHAO Xianyuan. Comparison and Analysis on Main and Newly Lunar Gravity Field Models[J]. Geomatics and Information Science of Wuhan University, 2013, 38(4): 390-393.
    [5]WANG Zhigang, BIAN Shaofeng. Passive Location of Underwater Target Based on Local Gravity Field Model[J]. Geomatics and Information Science of Wuhan University, 2008, 33(9): 918-921.
    [6]MA Hongbin, DONG Zhongyu. GPS Level Height Manage Method Based on DEM and Gravity Model[J]. Geomatics and Information Science of Wuhan University, 2007, 32(9): 767-769.
    [7]LUO Jia, SHI Chuang, ZOU Xiancai, WANG Haihong. Comparison of Present SST Gravity Field Models[J]. Geomatics and Information Science of Wuhan University, 2006, 31(7): 594-598.
    [8]LUO Jia, JIANG Weiping, WANG Haihong, ZOU Xiancai. Precision Analysis of SST Gravity Field Model in China[J]. Geomatics and Information Science of Wuhan University, 2006, 31(3): 199-202.
    [9]TAO Benzao. Control of the Adjustment Model Errors for the Earth's Gravity Field[J]. Geomatics and Information Science of Wuhan University, 2003, 28(6): 668-670,709.
    [10]NING Jingsheng. Following the Developments of the World,Devoting to the Study on the Earth Gravity Field[J]. Geomatics and Information Science of Wuhan University, 2001, 26(6): 471-474,486.
  • Cited by

    Periodical cited type(2)

    1. 李新星,李建成,周睿,范昊鹏. 六边形网格的平均重力异常数据构建及其统计优势分析. 武汉大学学报(信息科学版). 2025(03): 507-514 .
    2. 王兵. 基于EGM2008重力场高程异常值模型在矿山测量中的应用. 世界有色金属. 2022(16): 229-231 .

    Other cited types(1)

Catalog

    Article views PDF downloads Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return