DU Zhenqiang, CHAI Hongzhou, PAN Zongpeng, SHI Mingchen, QI Wenlong. DU Zhenqiang, CHAI Hongzhou, PAN Zongpeng, SHI Mingchen, QI Wenlong[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6): 913-919. DOI: 10.13203/j.whugis20190272
Citation: DU Zhenqiang, CHAI Hongzhou, PAN Zongpeng, SHI Mingchen, QI Wenlong. DU Zhenqiang, CHAI Hongzhou, PAN Zongpeng, SHI Mingchen, QI Wenlong[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6): 913-919. DOI: 10.13203/j.whugis20190272

DU Zhenqiang, CHAI Hongzhou, PAN Zongpeng, SHI Mingchen, QI Wenlong

Funds: 

The National Natural Science Foundation of China 41574010

The National Natural Science Foundation of China 41604013

Open Fund of National Key Laboratory of Geographic Information Engineering SKLGIE2015-Z-1-1

More Information
  • Author Bio:

    DU Zhenqiang, PhD candidate, specializes in the theories and methods of GNSS precise positioning. E-mail: gnsser1996@163.com

  • Corresponding author:

    CHAI Hongzhou, PhD, professor. E-mail: chaihz1969@163.com

  • Received Date: July 02, 2020
  • Published Date: June 04, 2021
  •   Objectives   The undifferenced ambiguity is recovered to the integer characteristics after the fractional cycle bias (FCB) product correction, which significantly shortens the convergence time of precision point positioning (PPP). When the uncombined FCB products are estimated, the original L1 and L2 FCB cannot be accurately separated due to the limitation of global ionospheric model accuracy.On one hand, due to the limitation of the accuracy of global ionospheric grid model, L1 and L2 ambiguity cannot be separated accurately in real-time, which makes the inconsistent for user end using the uncombined FCB products. On the other hand, due to the difference between the ionospheric combined FCB products and the uncombined FCB products, the user end with uncombined PPP model cannot use the ionospheric FCB products.
      Methods   A partial ambiguity resolution method for uncombined PPP using the ionosphere-free combined FCB product is proposed, which considers the consistency between the algorithm of generating the ionosphere-free combined at server end FCB product and the algorithm of the uncombined ambiguity resolution at user end. Constructing the narrow-lane ambiguity by using the raw ambiguity and wide-lane ambiguity of single difference between satellites, the ionosphere-free combined FCB product is used to fix the ambiguity step by step. Consisting of about 120 global multi-GNSS experiment (MGEX) stations are used to generate the ionosphere-free combined FCB and uncombined FCB products, and 10 stations which are not in the service end are selected for evaluation and validation. For the server end with 120 MGEX stations, 97.3% of the wide-lane ambiguity residuals and 96.8% of the narrow-lane ambiguity residuals are distributed after ionosphere-free combined FCB products correction. 96.7% of the wide-lane ambiguity residuals and 97.7% of the narrow-lane ambiguity residuals are distributed after uncombined FCB products correction.
      Results   The experimental results show that the positioning accuracy of the proposed method is improved by 25.0% and the convergence time is shortened by 21.1% in static condition, 26.7% and 17.9% in dynamic condition, respectively.
      Conclusions   Compared with the traditional FCB method, the proposed method can improve the positioning accuracy and shorten the convergence time, which can further broaden the application scenarios of PPP.
  • [1]
    Zumberge J F, Heflin M B, Jefferson D C, et al. Precise Point Positioning for the Efficient and Robust Analysis of GPS Data from Large Networks[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B3): 5 005-5 017 doi: 10.1029/96JB03860
    [2]
    Geng J, Teferle F N, Shi C, et al. Ambiguity Resolution in Precise Point Positioning with Hourly Data[J]. GPS Solutions, 2009, 13(4): 263-270 doi: 10.1007/s10291-009-0119-2
    [3]
    张小红, 左翔, 李盼. 非组合与组合PPP模型比较及定位性能分析[J]. 武汉大学学报·信息科学版, 2013, 38(5): 561-565 http://ch.whu.edu.cn/article/id/2636

    Zhang Xiaohong, Zuo Xiang, Li Pan. Mathematic Model and Performance Comparison Between Ionosphere Free Combined and Uncombined Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2013, 38(5): 561-565 http://ch.whu.edu.cn/article/id/2636
    [4]
    Li P, Zhang X, Ge M, et al. Three-Frequency BDS Precise Point Positioning Ambiguity Resolution Based on Raw Observables[J]. Journal of Geodesy, 2018, 92(12): 1 357-1 369 doi: 10.1007/s00190-018-1125-3
    [5]
    王进, 杨元喜, 张勤, 等. 多模GNSS融合PPP系统间偏差特性分析[J]. 武汉大学学报·信息科学版, 2019, 44(4): 475-481 doi: 10.13203/j.whugis20170132

    Wang Jin, Yang Yuanxi, Zhang Qin, et al. Analysis of Inter-system Bias in Multi-GNSS Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 475-481 doi: 10.13203/j.whugis20170132
    [6]
    Yao Y, Peng W, Xu C, et al. The Realization and Evaluation of Mixed GPS/BDS PPP Ambiguity Resolution[J]. Journal of Geodesy, 2019, 93(9): 1 283-1 295 doi: 10.1007/s00190-019-01245-x
    [7]
    章红平, 高周正, 牛小骥, 等. GPS非差非组合精密单点定位算法研究[J]. 武汉大学学报·信息科学版, 2013, 38(12): 1 396-1 399 http://ch.whu.edu.cn/article/id/2833

    Zhang Hongping, Gao Zhouzheng, Niu Xiaoji, et al. Research on GPS Precise Point Positioning with Un-differential and Un-combined Observations[J]. Geomatics and Information Science of Wuhan University, 2013, 38(12): 1 396-1 399 http://ch.whu.edu.cn/article/id/2833
    [8]
    姜卫平, 王锴华, 李昭, 等. GNSS坐标时间序列分析理论与方法及展望[J]. 武汉大学学报·信息科学版, 2018, 43(12): 2 112-2 123 doi: 10.13203/j.whugis20180333

    Jiang Weiping, Wang Kaihua, Li Zhao, et al. Prospect and Theory of GNSS Coordinate Time Series Analysis[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2 112-2 123 doi: 10.13203/j.whugis20180333
    [9]
    Li X, Zhang X, Ren X, et al. Precise Positioning with Current Multi-constellation Global Navigation Satellite Systems: GPS, GLONASS, Galileo and BeiDou[J]. Scientific Reports, 2015, 5: 8328 doi: 10.1038/srep08328
    [10]
    魏二虎, 刘学习, 王凌轩, 等. BDS/GPS组合精密单点定位精度分析与评价[J]. 武汉大学学报·信息科学版, 2018, 43(11): 1 654-1 660 doi: 10.13203/j.whugis20160568

    Wei Erhu, Liu Xuexi, Wang Lingxuan, et al. Analysis and Assessment of BDS/GPS Combined Precise Point Positioning Accuracy[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1 654-1 660 doi: 10.13203/j.whugis20160568
    [11]
    Liu T, Yuan Y, Zhang B, et al. Multi-GNSS Precise Point Positioning (MGPPP) Using Raw Observations[J]. Journal of Geodesy, 2017, 91(3): 253-268 doi: 10.1007/s00190-016-0960-3
    [12]
    Cao X, Li J, Zhang S, et al. Uncombined Precise Point Positioning with Triple-Frequency GNSS Signals[J]. Advances in Space Research, 2019, 63(9): 2 745-2 756 doi: 10.1016/j.asr.2018.03.030
    [13]
    Zhou F, Dong D, Li P, et al. Influence of Stochastic Modeling for Inter-System Biases on Multi-GNSS Undifferenced and Uncombined Precise Point Positioning[J]. GPS Solutions, 2019, 23(3): 1-13 doi: 10.1007/s10291-019-0852-0
    [14]
    Blewitt G. Carrier Phase Ambiguity Resolution for the Global Positioning System Applied to Geodetic Baselines up to 2 000 km[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B8): 10 187-10 203 doi: 10.1029/JB094iB08p10187
    [15]
    Ge M, Gendt G, Rothacher M, et al. Resolution of GPS Carrier-Phase Ambiguities in Precise Point Positioning (PPP) with Daily Observations[J]. Journal of Geodesy, 2008, 82(7): 389-399 doi: 10.1007/s00190-007-0187-4
    [16]
    Geng J. Rapid Integer Ambiguity Resolution in GPS Precise Point Positioning[D]. Nottingham : University of Nottingham, 2011
    [17]
    张小红, 李星星. 非差模糊度整数固定解PPP新方法及实验[J]. 武汉大学学报·信息科学版, 2010, 35(6): 657-660 http://ch.whu.edu.cn/article/id/958

    Zhang Xiaohong, Li Xingxing. A New Method for Zero-Differenced Interger Ambiguity Resolution and Its Application to PPP[J]. Geomatics and Information Science of Wuhan University, 2010, 35(6): 657-660 http://ch.whu.edu.cn/article/id/958
    [18]
    Dong D N, Bock Y. Global Positioning System Network Analysis with Phase Ambiguity Resolution Applied to Crustal Deformation Studies in California[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B4): 3 949-3 966 doi: 10.1029/JB094iB04p03949
    [19]
    潘宗鹏, 柴洪洲, 刘军, 等. 基于部分整周模糊度固定的非差GPS精密单点定位方法[J]. 测绘学报, 2015, 44(11): 1 210-1 218 doi: 10.11947/j.AGCS.2015.20150056

    Pan Zongpeng, Chai Hongzhou, Liu Jun, et al. GPS Partial Ambiguity Resolution Method for Zero-Difference Precise Point Positioning[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(11): 1 210-1 218 doi: 10.11947/j.AGCS.2015.20150056
    [20]
    李星星. GNSS精密单点定位及非差模糊度快速确定方法研究[D]. 武汉: 武汉大学, 2013

    Li Xingxing. Rapid Ambiguity Resolution in GNSS Precise Point Positioning[D]. Wuhan: Wuhan University, 2013
    [21]
    Li X, Ge M, Zhang H, et al. A Method for Improving Uncalibrated Phase Delay Estimation and Ambiguity-Fixing in Real-Time Precise Point Positioning[J]. Journal of Geodesy, 2013, 87(5): 405-416 doi: 10.1007/s00190-013-0611-x
  • Related Articles

    [1]GAO Xianjun, RAN Shuhao, ZHANG Guangbin, YANG Yuanwei. Building Extraction Based on Multi-feature Fusion and Object-Boundary Joint Constraint Network[J]. Geomatics and Information Science of Wuhan University, 2024, 49(3): 355-365. DOI: 10.13203/j.whugis20210520
    [2]ZENG Anmin, MING Feng, WU Fumei. Fusion Model for Long-Term Solutions to the Terrestrial Reference Frame Using Internal Constraints[J]. Geomatics and Information Science of Wuhan University, 2022, 47(9): 1447-1451. DOI: 10.13203/j.whugis20190453
    [3]LI Weilian, ZHU Jun, ZHANG Yunhao, FU Lin, HU Ya, YIN Lingzhi, DAI Yi. A Fusion Modeling and Interaction Method with Spatial Semantic Constraint for Debris Flow VR Scene[J]. Geomatics and Information Science of Wuhan University, 2020, 45(7): 1073-1081. DOI: 10.13203/j.whugis20180329
    [4]XIE Xuemei, SONG Yingchun, XIA Yuguo. An Active Set Algorithm of Conjugate Gradients for Adjustment Model with Interval Constraints[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9): 1274-1281. DOI: 10.13203/j.whugis20170325
    [5]FAN Yaxin, ZHU Xinyan, GUO Wei, SHE Bing. Boundary-Constrained Max-p-Regions Problem and Its Heuristic Algorithm[J]. Geomatics and Information Science of Wuhan University, 2019, 44(6): 859-865. DOI: 10.13203/j.whugis20170253
    [6]XIE Xuemei, SONG Yingchun, XIAO Zhaobing. A Fast Search Algorithm in Adjustment Model with Inequality Constraint[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1349-1354. DOI: 10.13203/j.whugis20160435
    [7]YANG Yuanxi, ZENG Anmin, JING Yifan. GNSS Data Fusion with Functional and Stochastic ModelConstraints as well as Property Analysis[J]. Geomatics and Information Science of Wuhan University, 2014, 39(2): 127-131. DOI: 10.13203/j.whugis20130378
    [8]ZHU Qing, LI Haifeng, YANG Xiaoxia. Hierarchical Semantic Constraint Model for Focused Remote Sensing Information Services[J]. Geomatics and Information Science of Wuhan University, 2009, 34(12): 1454-1457.
    [9]ZENG Anmin, YANG Yuanxi, OUYANG Guichong. Sequential Adjustment with Constraints Among Parameters[J]. Geomatics and Information Science of Wuhan University, 2008, 33(2): 183-186.
    [10]ZHONG Min, YAN Haoming, ZHU Yaozhong, YU Yongqiang. Global Ocean Angular Momentum Variability and Geodetic Constraint[J]. Geomatics and Information Science of Wuhan University, 2003, 28(6): 697-702.
  • Cited by

    Periodical cited type(1)

    1. 任亚飞,郑玉丽,姚雷博. 基于图像识别的淬火过程中钢球计数研究. 拖拉机与农用运输车. 2021(06): 52-54+58 .

    Other cited types(3)

Catalog

    Article views PDF downloads Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return