DU Zhenqiang, CHAI Hongzhou, PAN Zongpeng, SHI Mingchen, QI Wenlong. DU Zhenqiang, CHAI Hongzhou, PAN Zongpeng, SHI Mingchen, QI Wenlong[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6): 913-919. DOI: 10.13203/j.whugis20190272
Citation: DU Zhenqiang, CHAI Hongzhou, PAN Zongpeng, SHI Mingchen, QI Wenlong. DU Zhenqiang, CHAI Hongzhou, PAN Zongpeng, SHI Mingchen, QI Wenlong[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6): 913-919. DOI: 10.13203/j.whugis20190272

DU Zhenqiang, CHAI Hongzhou, PAN Zongpeng, SHI Mingchen, QI Wenlong

Funds: 

The National Natural Science Foundation of China 41574010

The National Natural Science Foundation of China 41604013

Open Fund of National Key Laboratory of Geographic Information Engineering SKLGIE2015-Z-1-1

More Information
  • Author Bio:

    DU Zhenqiang, PhD candidate, specializes in the theories and methods of GNSS precise positioning. E-mail: gnsser1996@163.com

  • Corresponding author:

    CHAI Hongzhou, PhD, professor. E-mail: chaihz1969@163.com

  • Received Date: July 02, 2020
  • Published Date: June 04, 2021
  •   Objectives   The undifferenced ambiguity is recovered to the integer characteristics after the fractional cycle bias (FCB) product correction, which significantly shortens the convergence time of precision point positioning (PPP). When the uncombined FCB products are estimated, the original L1 and L2 FCB cannot be accurately separated due to the limitation of global ionospheric model accuracy.On one hand, due to the limitation of the accuracy of global ionospheric grid model, L1 and L2 ambiguity cannot be separated accurately in real-time, which makes the inconsistent for user end using the uncombined FCB products. On the other hand, due to the difference between the ionospheric combined FCB products and the uncombined FCB products, the user end with uncombined PPP model cannot use the ionospheric FCB products.
      Methods   A partial ambiguity resolution method for uncombined PPP using the ionosphere-free combined FCB product is proposed, which considers the consistency between the algorithm of generating the ionosphere-free combined at server end FCB product and the algorithm of the uncombined ambiguity resolution at user end. Constructing the narrow-lane ambiguity by using the raw ambiguity and wide-lane ambiguity of single difference between satellites, the ionosphere-free combined FCB product is used to fix the ambiguity step by step. Consisting of about 120 global multi-GNSS experiment (MGEX) stations are used to generate the ionosphere-free combined FCB and uncombined FCB products, and 10 stations which are not in the service end are selected for evaluation and validation. For the server end with 120 MGEX stations, 97.3% of the wide-lane ambiguity residuals and 96.8% of the narrow-lane ambiguity residuals are distributed after ionosphere-free combined FCB products correction. 96.7% of the wide-lane ambiguity residuals and 97.7% of the narrow-lane ambiguity residuals are distributed after uncombined FCB products correction.
      Results   The experimental results show that the positioning accuracy of the proposed method is improved by 25.0% and the convergence time is shortened by 21.1% in static condition, 26.7% and 17.9% in dynamic condition, respectively.
      Conclusions   Compared with the traditional FCB method, the proposed method can improve the positioning accuracy and shorten the convergence time, which can further broaden the application scenarios of PPP.
  • [1]
    Zumberge J F, Heflin M B, Jefferson D C, et al. Precise Point Positioning for the Efficient and Robust Analysis of GPS Data from Large Networks[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B3): 5 005-5 017 doi: 10.1029/96JB03860
    [2]
    Geng J, Teferle F N, Shi C, et al. Ambiguity Resolution in Precise Point Positioning with Hourly Data[J]. GPS Solutions, 2009, 13(4): 263-270 doi: 10.1007/s10291-009-0119-2
    [3]
    张小红, 左翔, 李盼. 非组合与组合PPP模型比较及定位性能分析[J]. 武汉大学学报·信息科学版, 2013, 38(5): 561-565 http://ch.whu.edu.cn/article/id/2636

    Zhang Xiaohong, Zuo Xiang, Li Pan. Mathematic Model and Performance Comparison Between Ionosphere Free Combined and Uncombined Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2013, 38(5): 561-565 http://ch.whu.edu.cn/article/id/2636
    [4]
    Li P, Zhang X, Ge M, et al. Three-Frequency BDS Precise Point Positioning Ambiguity Resolution Based on Raw Observables[J]. Journal of Geodesy, 2018, 92(12): 1 357-1 369 doi: 10.1007/s00190-018-1125-3
    [5]
    王进, 杨元喜, 张勤, 等. 多模GNSS融合PPP系统间偏差特性分析[J]. 武汉大学学报·信息科学版, 2019, 44(4): 475-481 doi: 10.13203/j.whugis20170132

    Wang Jin, Yang Yuanxi, Zhang Qin, et al. Analysis of Inter-system Bias in Multi-GNSS Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 475-481 doi: 10.13203/j.whugis20170132
    [6]
    Yao Y, Peng W, Xu C, et al. The Realization and Evaluation of Mixed GPS/BDS PPP Ambiguity Resolution[J]. Journal of Geodesy, 2019, 93(9): 1 283-1 295 doi: 10.1007/s00190-019-01245-x
    [7]
    章红平, 高周正, 牛小骥, 等. GPS非差非组合精密单点定位算法研究[J]. 武汉大学学报·信息科学版, 2013, 38(12): 1 396-1 399 http://ch.whu.edu.cn/article/id/2833

    Zhang Hongping, Gao Zhouzheng, Niu Xiaoji, et al. Research on GPS Precise Point Positioning with Un-differential and Un-combined Observations[J]. Geomatics and Information Science of Wuhan University, 2013, 38(12): 1 396-1 399 http://ch.whu.edu.cn/article/id/2833
    [8]
    姜卫平, 王锴华, 李昭, 等. GNSS坐标时间序列分析理论与方法及展望[J]. 武汉大学学报·信息科学版, 2018, 43(12): 2 112-2 123 doi: 10.13203/j.whugis20180333

    Jiang Weiping, Wang Kaihua, Li Zhao, et al. Prospect and Theory of GNSS Coordinate Time Series Analysis[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2 112-2 123 doi: 10.13203/j.whugis20180333
    [9]
    Li X, Zhang X, Ren X, et al. Precise Positioning with Current Multi-constellation Global Navigation Satellite Systems: GPS, GLONASS, Galileo and BeiDou[J]. Scientific Reports, 2015, 5: 8328 doi: 10.1038/srep08328
    [10]
    魏二虎, 刘学习, 王凌轩, 等. BDS/GPS组合精密单点定位精度分析与评价[J]. 武汉大学学报·信息科学版, 2018, 43(11): 1 654-1 660 doi: 10.13203/j.whugis20160568

    Wei Erhu, Liu Xuexi, Wang Lingxuan, et al. Analysis and Assessment of BDS/GPS Combined Precise Point Positioning Accuracy[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1 654-1 660 doi: 10.13203/j.whugis20160568
    [11]
    Liu T, Yuan Y, Zhang B, et al. Multi-GNSS Precise Point Positioning (MGPPP) Using Raw Observations[J]. Journal of Geodesy, 2017, 91(3): 253-268 doi: 10.1007/s00190-016-0960-3
    [12]
    Cao X, Li J, Zhang S, et al. Uncombined Precise Point Positioning with Triple-Frequency GNSS Signals[J]. Advances in Space Research, 2019, 63(9): 2 745-2 756 doi: 10.1016/j.asr.2018.03.030
    [13]
    Zhou F, Dong D, Li P, et al. Influence of Stochastic Modeling for Inter-System Biases on Multi-GNSS Undifferenced and Uncombined Precise Point Positioning[J]. GPS Solutions, 2019, 23(3): 1-13 doi: 10.1007/s10291-019-0852-0
    [14]
    Blewitt G. Carrier Phase Ambiguity Resolution for the Global Positioning System Applied to Geodetic Baselines up to 2 000 km[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B8): 10 187-10 203 doi: 10.1029/JB094iB08p10187
    [15]
    Ge M, Gendt G, Rothacher M, et al. Resolution of GPS Carrier-Phase Ambiguities in Precise Point Positioning (PPP) with Daily Observations[J]. Journal of Geodesy, 2008, 82(7): 389-399 doi: 10.1007/s00190-007-0187-4
    [16]
    Geng J. Rapid Integer Ambiguity Resolution in GPS Precise Point Positioning[D]. Nottingham : University of Nottingham, 2011
    [17]
    张小红, 李星星. 非差模糊度整数固定解PPP新方法及实验[J]. 武汉大学学报·信息科学版, 2010, 35(6): 657-660 http://ch.whu.edu.cn/article/id/958

    Zhang Xiaohong, Li Xingxing. A New Method for Zero-Differenced Interger Ambiguity Resolution and Its Application to PPP[J]. Geomatics and Information Science of Wuhan University, 2010, 35(6): 657-660 http://ch.whu.edu.cn/article/id/958
    [18]
    Dong D N, Bock Y. Global Positioning System Network Analysis with Phase Ambiguity Resolution Applied to Crustal Deformation Studies in California[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B4): 3 949-3 966 doi: 10.1029/JB094iB04p03949
    [19]
    潘宗鹏, 柴洪洲, 刘军, 等. 基于部分整周模糊度固定的非差GPS精密单点定位方法[J]. 测绘学报, 2015, 44(11): 1 210-1 218 doi: 10.11947/j.AGCS.2015.20150056

    Pan Zongpeng, Chai Hongzhou, Liu Jun, et al. GPS Partial Ambiguity Resolution Method for Zero-Difference Precise Point Positioning[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(11): 1 210-1 218 doi: 10.11947/j.AGCS.2015.20150056
    [20]
    李星星. GNSS精密单点定位及非差模糊度快速确定方法研究[D]. 武汉: 武汉大学, 2013

    Li Xingxing. Rapid Ambiguity Resolution in GNSS Precise Point Positioning[D]. Wuhan: Wuhan University, 2013
    [21]
    Li X, Ge M, Zhang H, et al. A Method for Improving Uncalibrated Phase Delay Estimation and Ambiguity-Fixing in Real-Time Precise Point Positioning[J]. Journal of Geodesy, 2013, 87(5): 405-416 doi: 10.1007/s00190-013-0611-x
  • Related Articles

    [1]TANG Jun, ZHONG Zhengyu, DING Mingfei, WU Xuequn. Ionospheric TEC Prediction in China Based on ENN Improved by PSO Algorithm[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1867-1878. DOI: 10.13203/j.whugis20220254
    [2]LI Yongtao, ZHAO Ang, LI Jianwen, CHE Tongyu, PAN Lin, CHEN Chen. Regional Ionospheric TEC Modeling and Accuracy Analysis Based on Observations from a Station[J]. Geomatics and Information Science of Wuhan University, 2022, 47(1): 69-78. DOI: 10.13203/j.whugis20190286
    [3]OU Ming, ZHEN Weimin, XU Jisheng, YU Xiao, LIU Yiwen, LIU Dun. Regional Ionospheric TEC Reconstruction by Data Assimilation Technique[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1075-1081. DOI: 10.13203/j.whugis20150297
    [4]SONG Fucheng, SHI Shuangshuang, FENG Jiandi. Construction of Ionospheric TEC Assimilation Model Based on Chapman Function[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 784-790. DOI: 10.13203/j.whugis20150101
    [5]WANG Zemin, CHE Guowei, AN Jiachun. Comprehensive Observation and Analysis of Weddell Sea Anomaly in Antarctica[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1421-1427. DOI: 10.13203/j.whugis20150270
    [6]NIE Wenfeng, HU Wusheng, PAN Shuguo, SONG Yubing. )Extraction of Regional Ionospheric TEC from GPS Dual Observation[J]. Geomatics and Information Science of Wuhan University, 2014, 39(9): 1022-1027. DOI: 10.13203/j.whugis20130046
    [7]TANG Jun, YAO Yibin, CHEN Peng, ZHANG Shun. Prediction Models of Ionospheric TEC Improved by EMD Method[J]. Geomatics and Information Science of Wuhan University, 2013, 38(4): 408-411.
    [8]CHEN Peng, YAO Yibin, WU Han. TEC Prediction of Ionosphere Based on Time Series Analysis[J]. Geomatics and Information Science of Wuhan University, 2011, 36(3): 267-270.
    [9]LIN Jian, WU Yun, ZHU Fuying. Ionosphere TEC Anomalous Disturbance of Pre-seism[J]. Geomatics and Information Science of Wuhan University, 2009, 34(8): 975-978.
    [10]MENG Yang, WANG Zemin, E Dongchen. Ionopsheric TEC Anomalies of Pre-Earthquake Based on GPS Data[J]. Geomatics and Information Science of Wuhan University, 2008, 33(1): 81-84.
  • Cited by

    Periodical cited type(28)

    1. 吕峥,孙群,温伯威,张付兵,马京振. 顾及形状相似性的道路与居民地协同化简方法. 地球信息科学学报. 2024(05): 1270-1282 .
    2. 铁占琦. 利用改进的Hausdorff距离匹配多尺度线要素. 地理空间信息. 2024(05): 62-65 .
    3. 王庆社,王雅欣,姜青香,郭思慧. “天地图·北京”多源道路数据融合关键技术研究. 北京测绘. 2024(06): 874-879 .
    4. 陈钉均,梁芮嘉. 基于特征聚类驾驶员服从度跟驰模型参数标定. 计算机仿真. 2024(10): 126-132 .
    5. 齐杰,王中辉,李驿言. 基于图卷积神经网络的道路网匹配. 测绘通报. 2023(12): 19-24+44 .
    6. 吴冰娇,王中辉,杨飞. 用于多尺度道路网匹配的语义相似性计算模型. 测绘科学. 2022(03): 166-173 .
    7. 蒋阳升,俞高赏,胡路,李衍. 基于聚类站点客流公共特征的轨道交通车站精细分类. 交通运输系统工程与信息. 2022(04): 106-112 .
    8. 周秀华,李乃强. 基于多种相似度特征的道路实体融合方法. 测绘通报. 2021(08): 102-105+157 .
    9. 秦育罗,宋伟东,张在岩,孙小荣. 顾及几何特征和拓扑连续性的道路网匹配方法. 测绘通报. 2021(08): 55-60 .
    10. 杨飞,王中辉. 河系几何相似性的层次度量方法. 地球信息科学学报. 2021(12): 2139-2150 .
    11. 程绵绵,孙群,季晓林,赵云鹏. 改进平均Fréchet距离法及在化简评价中的应用. 测绘科学. 2020(03): 170-177 .
    12. 赵元棣,田英杰,吴佳馨. 航空器飞行轨迹相似性度量及聚类分析. 中国科技论文. 2020(02): 249-254 .
    13. Wenyue GUO,Anzhu YU,Qun SUN,Shaomei LI,Qing XU,Bowei WEN,Yuanfu LI. A Multisource Contour Matching Method Considering the Similarity of Geometric Features. Journal of Geodesy and Geoinformation Science. 2020(03): 76-87 .
    14. 秦育罗,郭冰,孙小荣. 改进Hausdorff距离及其在多尺度道路网匹配中的应用. 测绘科学技术学报. 2020(03): 313-318 .
    15. 郝志伟,李成名,殷勇,武鹏达,吴伟. 一种基于Fréchet距离的断裂等高线内插算法. 测绘通报. 2019(01): 65-68+74 .
    16. 郭文月,刘海砚,孙群,余岸竹,丁梓越. 顾及几何特征相似性的多源等高线匹配方法. 测绘学报. 2019(05): 643-653 .
    17. 宗琴,彭荃,秦万英. 一种基于模糊矩阵的空间面对象相似性度量算法. 北京测绘. 2019(10): 1218-1221 .
    18. 李兆兴,翟京生,武芳. 线要素综合的形状相似性评价方法. 武汉大学学报(信息科学版). 2019(12): 1859-1864 .
    19. 周家新,陈建勇,单志超,陈长康. 航空磁探中潜艇目标的联合估计检测方法研究. 兵工学报. 2018(05): 833-840 .
    20. 郭宁宁,盛业华,吕海洋,黄宝群,张思阳. 径向基函数神经网络的路网自动匹配算法. 测绘科学. 2018(03): 45-50 .
    21. 张瀚,李静,吕品,徐永志,刘格林. 六角格网的弧线矢量数据量化拟合方法. 计算机辅助设计与图形学学报. 2018(04): 557-567 .
    22. 邵世维,刘辉,肖立霞,王恒. 一种基于Fréchet距离的复杂线状要素匹配方法. 武汉大学学报(信息科学版). 2018(04): 516-521 .
    23. 苏满佳,张逸鸿,谢荣臻,朱海飞,管贻生,毛世鑫. 连续软体机器人的结构范型与形态复现. 机器人. 2018(05): 640-647+672 .
    24. 宗琴,姜树辉,刘艳霞. 多尺度矢量地图中模糊相似变换及其度量模型. 测绘科学. 2018(11): 72-78 .
    25. 郭文月,刘海砚,孙群,余岸竹,季晓林. 利用最长公共子序列度量线要素相似性的方法. 测绘科学技术学报. 2018(05): 518-523 .
    26. 郭宁宁,盛业华,黄宝群,吕海洋,张思阳. 基于人工神经网络的多特征因子路网匹配算法. 地球信息科学学报. 2016(09): 1153-1159 .
    27. 杨亚辉. 利用几何相似性快速测量鱼重的数学模型. 电子技术与软件工程. 2016(20): 182-183 .
    28. 逯跃锋,张奎,刘硕,吴跃,赵硕,李强,冯晨. 一种基于斜率差和方位角的矢量数据匹配算法. 山东大学学报(工学版). 2016(06): 31-39 .

    Other cited types(28)

Catalog

    Article views (820) PDF downloads (111) Cited by(56)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return