Citation: | YU Tingting, DONG Youfu. Correcting Elevation Error of ASTER GDEM Using Random Forest Regression Algorithm[J]. Geomatics and Information Science of Wuhan University, 2021, 46(7): 1098-1105. DOI: 10.13203/j.whugis20190245 |
[1] |
Florinsky I V, Skrypitsyna T N, Luschikova O S. Comparative Accuracy of the AW3D30 DSM, ASTER GDEM, and SRTM1 DEM: A Case Study on the Zaoksky Testing Ground, Central European Russia[J]. Remote Sensing Letters, 2018, 9(7): 706-714 doi: 10.1080/2150704X.2018.1468098
|
[2] |
张品, 申重阳, 杨光亮, 等. ASTER GDEM垂直精度评价及其在重力地形改正中的适用性[J]. 大地测量与地球动力学, 2015, 35(2): 318-321, 330 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201502033.htm
Zhang Pin, Shen Chongyang, Yang Guangliang, et al. Vertical Accuracy Evaluation of ASTER GDEM and Its Applicability in Gravity Terrain Correction[J]. Journal of Geodesy and Geodynamics, 2015, 35(2): 318-321, 330 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201502033.htm
|
[3] |
苟娇娇, 罗明良, 王飞. 影响黄土高原集水面积阈值的地形因子主成分分析[J]. 武汉大学学报·信息科学版, 2017, 42(5): 704-710 doi: 10.13203/j.whugis20140783
Gou Jiaojiao, Luo Mingliang, Wang Fei. Principal Component Analysis for the Terrain Factors of Flow Accumulation Threshold in Loess Plateau[J]. Geomatics and Information Science of Wuhan University, 2017, 42(5): 704-710 doi: 10.13203/j.whugis20140783
|
[4] |
郑买红, 胡文英, 吴风志. 基于OLI和ASTER GDEM数据的云南昌宁县滑坡、泥石流易发度评价[J]. 云南地理环境研究, 2018, 30(3): 40-46 doi: 10.3969/j.issn.1001-7852.2018.03.006
Zheng Maihong, Hu Wenying, Wu Fengzhi. Evaluation of Landslide and Debris Flow in Changning County, Yunnan Based on OLI and ASTER GDEM Data[J]. Yunnan Geographic Environment Research, 2018, 30(3): 40-46 doi: 10.3969/j.issn.1001-7852.2018.03.006
|
[5] |
沈焕锋, 刘露, 岳林蔚, 等. 多源DEM融合的高差拟合神经网络方法[J]. 测绘学报, 2018, 47(6): 854-863 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201806019.htm
Shen Huanfeng, Liu Lu, Yue Linwei, et al. High Difference Fitting Neural Network Method for Multisource DEM Fusion[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6): 854-863 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201806019.htm
|
[6] |
谢翠贞. 基于SRTM3 DEM与ASTER GDEM的DEM融合方法研究[D]. 南昌: 东华理工大学, 2015
Xie Cuizhen. Research on DEM Fusion Method Based on SRTM3 DEM and ASTER GDEM[D]. Nanchang: Donghua University of Technology, 2015
|
[7] |
赵海涛, 张兵, 左正立, 等. 中国及周边区域ASTER GDEM与SRTM DEM高程对比分析及互补修复[J]. 测绘科学, 2012, 37(1): 8-11 https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201201003.htm
Zhao Haitao, Zhang Bing, Zuo Zhengli, et al. Comparative Analysis and Complementary Repair of ASTER GDEM and SRTM DEM Elevations in China and Surrounding Areas[J]. Science of Surveying and Mapping, 2012, 37(1): 8-11 https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201201003.htm
|
[8] |
罗学彬, 李国明, 赵登文, 等. 基于SRTM DEM的ASTER GDEM数据修复方法研究[J]. 价值工程, 2017, 36(30): 187-189 https://www.cnki.com.cn/Article/CJFDTOTAL-JZGC201730079.htm
Luo Xuebin, Li Guoming, Zhao Dengwen, et al. Research on Data Repair Method of ASTER GDEM Based on SRTM DEM[J]. Value Engineering, 2017, 36(30): 187-189 https://www.cnki.com.cn/Article/CJFDTOTAL-JZGC201730079.htm
|
[9] |
张朝忙, 刘庆生, 刘高焕, 等. SRTM3与ASTER G-DEM数据处理及应用进展[J]. 地理与地理信息科学, 2012, 28(5): 29-34 https://www.cnki.com.cn/Article/CJFDTOTAL-DLGT201205008.htm
Zhang Chaomang, Liu Qingsheng, Liu Gaohuan, et al. Progress in Data Processing and Application of SRTM3 and ASTER GDEM[J]. Geography and GeoInformation Science, 2012, 28(5): 29-34 https://www.cnki.com.cn/Article/CJFDTOTAL-DLGT201205008.htm
|
[10] |
惠珊, 李远华. 回归与内插法处理ASTER GDEM数据异常值的研究[J]. 科学技术与工程, 2012, 12(22): 5 455-5 459 https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201222009.htm
Hui Shan, Li Yuanhua. Research on Regression and Interpolation Method for Processing Outliers of ASTER GDEM Data[J]. Science Technology and Engineering, 2012, 12(22): 5 455-5 459 https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201222009.htm
|
[11] |
杜小平, 郭华东, 范湘涛, 等. 基于ICESat/GLAS数据的中国典型区域SRTM与ASTER GDEM高程精度评价[J]. 地球科学——中国地质大学学报, 2013, 38(4): 887-897 https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201304023.htm
Du Xiaoping, Guo Huadong, Fan Xiangtao, et al. Evaluation of Elevation Accuracy of SRTM and ASTER GDEM in Typical Regions of China Based on ICESat/GLAS Data[J]. Earth Science—Journal of China University of Geosciences, 2013, 38(4): 887-897 https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201304023.htm
|
[12] |
胡加佩, 关小荣, 刘学军. 中国区域SRTM DEM与ASTER GDEM误差空间分布特征[J]. 地理与地理信息科学, 2017, 33(4): 28-33 doi: 10.3969/j.issn.1672-0504.2017.04.005
Hu Jiapei, Guan Xiaorong, Liu Xuejun. The Spatial Distribution Characteristics of SRTM DEM and ASTER GDEM Errors in China[J]. Geography and GeoInformation Science, 2017, 33(4): 28-33 doi: 10.3969/j.issn.1672-0504.2017.04.005
|
[13] |
Satgé F, Bonnet M P, Timouk F, et al. Accuracy Assessment of SRTM v4 and ASTER GDEM v2 over the Altiplano Watershed Using ICESat/GLAS Data[J]. International Journal of Remote Sensing, 2015, 36(2): 465-488 doi: 10.1080/01431161.2014.999166
|
[14] |
Gesch D, Oimoen M, Danielson J, et al. Validation of the ASTER Global Digital Elevation Model Version 3 over the Conterminous United States[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016(XLI-B4): 143-148
|
[15] |
Tadono T, Takaku J, Shimada M. Validation Study on ALOS PRISM DSM MOSAIC and ASTER GDEM2[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2012(I-4): 193-198 http://adsabs.harvard.edu/abs/2012ISPAn..I4..193T
|
[16] |
李振林, 王晶. ASTER GDEM与实测数据精度对比及其影响因素分析[J]. 测绘与空间地理信息, 2013, 36(11): 150-153 doi: 10.3969/j.issn.1672-5867.2013.11.047
Li Zhenlin, Wang Jing. Analysis of Accuracy Comparison Between ASTER GDEM and Measured Data and Its Influencing Factors[J]. Surveying and Spatial Geography Information, 2013, 36(11): 150-153 doi: 10.3969/j.issn.1672-5867.2013.11.047
|
[17] |
赵国松, 杜耘, 凌峰, 等. ASTER GDEM与SRTM3高程差异影响因素分析[J]. 测绘科学, 2012, 37(4): 167-170 https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201204057.htm
Zhao Guosong, Du Yun, Ling Feng, et al. Analysis of Factors Affecting the Difference of ASTER GDEM and SRTM3 Elevation[J]. Science of Surveying and Mapping, 2012, 37(4): 167-170 https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201204057.htm
|
[18] |
张玉伦, 王叶堂. 低山丘陵区多源数字高程模型误差分析[J]. 遥感技术与应用, 2018, 33(6): 1 112-1 121 https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS201806014.htm
Zhang Yulun, Wang Yetang. Error Analysis of Multisource Digital Elevation Model in Low Mountain and Hilly Area[J]. Remote Sensing Technology and Application, 2018, 33(6): 1 112-1 121 https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS201806014.htm
|
[19] |
Dong Youfu, Shortridge A M. A Regional ASTER GDEM Error Model for the Chinese Loess Plateau[J]. International Journal of Remote Sensing, 2019, 40(3): 1 048-1 065 doi: 10.1080/01431161.2018.1524171
|
[20] |
Luana Shaopeng, Hou Xiyong, Wang Yetang. Assessing the Accuracy of SRTM DEM and ASTER GDEM Datasets for the Coastal Zone of Shandong Province, Eastern China[J]. Polish Maritime Research, 2015, 22(s1): 15-20 doi: 10.1515/pomr-2015-0026
|
[21] |
Breiman L. Random Forests[J]. Machine Learning, 2001, 45(1): 5-32 doi: 10.1023/A:1010933404324
|
[22] |
Suwandana E, Kawamura K, Sakuno Y, et al. Thematic Information Content Assessment of the ASTER GDEM: A Case Study of Watershed Delineation in West Java, Indonesia[J]. Remote Sensing Letters, 2012, 3(5): 423-432 doi: 10.1080/01431161.2011.593580
|
[23] |
Zhang Quan, Yang Qinke, Wang Chunmei. SRTM Error Distribution and Its Associations with Landscapes Across China[J]. Photogrammetric Engineering & Remote Sensing, 2016, 82(2): 135-148 http://www.sciencedirect.com/science/article/pii/S0099111216300416
|
[24] |
马延慈, 明艳芳, 王凯, 等. 基于高分辨率人工识别地表类型的GlobeLan-d30产品精度评价[J]. 山东科技大学学报(自然科学版), 2018, 37(5): 1-10, 26 https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY201805001.htm
Ma Yanci, Ming Yanfang, Wang Kai, et al. Accuracy Evaluation of GlobeLand30 Products Based on High Resolution Artificial Recognition of Surface Types[J]. Journal of Shandong University of Science and Technology (Natural Science Edition), 2018, 37(5): 1-10, 26 https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY201805001.htm
|
[25] |
郭海荣, 焦文海, 杨元喜. 1985国家高程基准与全球似大地水准面之间的系统差及其分布规律[J]. 测绘学报, 2004, 33(2): 100-104 doi: 10.3321/j.issn:1001-1595.2004.02.002
Guo Hairong, Jiao Wenhai, Yang Yuanxi. The Systematic Difference and Its Distribution Between the 1985 National Height Datum and the Global Quasigeoid[J]. Acta Geodaetica et Cartographica Sinica, 2004, 33(2): 100-104 doi: 10.3321/j.issn:1001-1595.2004.02.002
|
[26] |
Shortridge A, Messina J. Spatial Structure and Landscape Associations of SRTM Error[J]. Remote Sensing of Environment, 2011, 115(6): 1 576-1 587 doi: 10.1016/j.rse.2011.02.017
|
[27] |
Kabacoff R I. R语言实战[M]. 北京: 人民邮电出版社, 2016
Kabacoff R I. R in Action[M]. Beijing: Posts & Telecom Press, 2016
|
[1] | GUO Wenfei, ZHU Mengmeng, GU Shengfeng, ZUO Hongming, CHEN Jinxin. GNSS Precise Time-Frequency Receiver Clock Steering Model and Parameter Design Method[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1126-1133. DOI: 10.13203/j.whugis20220458 |
[2] | SUN Leyuan, YANG Jun, GUO Xiye, HUANG Wende. Frequency Performance Evaluation of BeiDou-3 Satellite Atomic Clocks[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20200486 |
[3] | WU Yiwei, YANG Bin, XIAO Shenghong, WANG Maolei. Atomic Clock Models and Frequency Stability Analyses[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1226-1232. DOI: 10.13203/j.whugis20180058 |
[4] | AN Xiangdong, CHEN Hua, JIANG Weiping, XIAO Yugang, ZHAO Wen. GLONASS Ambiguity Resolution Method Based on Long Baselines and Experimental Analysis[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5): 690-698. DOI: 10.13203/j.whugis20170091 |
[5] | LI Mingzhe, ZHANG Shaocheng, HU Youjian, HOU Weizhen. Comparison of GNSS Satellite Clock Stability Based on High Frequency Observations[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1490-1495, 1503. DOI: 10.13203/j.whugis20160537 |
[6] | WANG Ning, WANG Yupu, LI Linyang, ZHAI Shufeng, LV Zhiping. Stability Analysis of the Space-borne Atomic Clock Frequency for BDS[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1256-1263. DOI: 10.13203/j.whugis20150806 |
[7] | LIU Zhiqiang, YUE Dongjie, WANG Hu, ZHENG Dehua. An Approach for Real-Time GPS/GLONASS Satellite Clock Estimation with GLONASS Code Inter-Frequency Biases Compensation[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1209-1215. DOI: 10.13203/j.whugis20150542 |
[8] | HUANG Guanwen, YU Hang, GUO Hairong, ZHANG Juqing, FU Wenju, TIAN Jie. Analysis of the Mid-long Term Characterization for BDS On-orbit Satellite Clocks[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 982-988. DOI: 10.13203/j.whugis20140827 |
[9] | MAO Yue, CHEN Jianpeng, DAI Wei, JIA Xiaolin. Analysis of On-board Atomic Clock Stability Influences[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1182-1186. |
[10] | GUO Hairong, YANG Yuanxi. Analyses of Main Error Sources on Time-Domain Frequency Stability for Atomic Clocks of Navigation Satellites[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 218-221. |