YU Tingting, DONG Youfu. Correcting Elevation Error of ASTER GDEM Using Random Forest Regression Algorithm[J]. Geomatics and Information Science of Wuhan University, 2021, 46(7): 1098-1105. DOI: 10.13203/j.whugis20190245
Citation: YU Tingting, DONG Youfu. Correcting Elevation Error of ASTER GDEM Using Random Forest Regression Algorithm[J]. Geomatics and Information Science of Wuhan University, 2021, 46(7): 1098-1105. DOI: 10.13203/j.whugis20190245

Correcting Elevation Error of ASTER GDEM Using Random Forest Regression Algorithm

Funds: 

The National Natural Science Foundation of China 41131360

The National Natural Science Foundation of China 41871324

More Information
  • Author Bio:

    YU Tingting, master, specializes in digital elevation model uncertainty. E-mail: 15850736616@163.com

  • Corresponding author:

    DONG Youfu, PhD, professor. E-mail: dongyoufu@163.com

  • Received Date: October 09, 2019
  • Published Date: July 09, 2021
  •   Objectives  Effective correction of ASTER GDEM (advanced spaceborne thermal emission and reflection radiometer global digital elevation model) elevation error is of great significance to the quality and application of ASTER GDEM data. Terrain parameters such as slope and aspect derived from digital elevation model (DEM) data have a significant impact on the accuracy of the data. Therefore, the relationship model between the ASTER GDEM elevation error and each influencing factor can be constructed to effectively correct its elevation accuracy.
      Methods  Four geomorphological types of Changwu, Yijun, Ganquan and Yanchuan in the Loess Plateau of northern Shaanxi are selected. With 1∶50 000 DEM as reference data, after data preprocessing, the elevation error values and related topographic factors and the surface coverage index of each point are calculated, by extracting a certain number of sampling points and check points, a random forest regression algorithm is introduced to establish an elevation error prediction model to correct the elevation accuracy, and compared with multiple regression model.
      Results  ASTER GDEM elevation error characteristics are closely related to the terrain conditions; the contribution of each impact factor to the model is different in different areas; the random forest regression prediction model is better than the multiple regression model overall, and has good applicability and error correction effect. It can reduce the error mean of Changwu, Yijun, Ganquan and Yanchuan by 3.08 m, 3.00 m, 3.61 m and 6.95 m.
      Conclusions  This research is helpful to understand the ASTER GDEM elevation error characteristics and its influencing factors in different geomorphological areas of the Loess Plateau in northern Shaanxi. At the same time, suitable regression models can be selected for areas with different terrain conditions to effectively correct the error values, further improve the application accuracy of ASTER GDEM data.
  • [1]
    Florinsky I V, Skrypitsyna T N, Luschikova O S. Comparative Accuracy of the AW3D30 DSM, ASTER GDEM, and SRTM1 DEM: A Case Study on the Zaoksky Testing Ground, Central European Russia[J]. Remote Sensing Letters, 2018, 9(7): 706-714 doi: 10.1080/2150704X.2018.1468098
    [2]
    张品, 申重阳, 杨光亮, 等. ASTER GDEM垂直精度评价及其在重力地形改正中的适用性[J]. 大地测量与地球动力学, 2015, 35(2): 318-321, 330 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201502033.htm

    Zhang Pin, Shen Chongyang, Yang Guangliang, et al. Vertical Accuracy Evaluation of ASTER GDEM and Its Applicability in Gravity Terrain Correction[J]. Journal of Geodesy and Geodynamics, 2015, 35(2): 318-321, 330 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201502033.htm
    [3]
    苟娇娇, 罗明良, 王飞. 影响黄土高原集水面积阈值的地形因子主成分分析[J]. 武汉大学学报·信息科学版, 2017, 42(5): 704-710 doi: 10.13203/j.whugis20140783

    Gou Jiaojiao, Luo Mingliang, Wang Fei. Principal Component Analysis for the Terrain Factors of Flow Accumulation Threshold in Loess Plateau[J]. Geomatics and Information Science of Wuhan University, 2017, 42(5): 704-710 doi: 10.13203/j.whugis20140783
    [4]
    郑买红, 胡文英, 吴风志. 基于OLI和ASTER GDEM数据的云南昌宁县滑坡、泥石流易发度评价[J]. 云南地理环境研究, 2018, 30(3): 40-46 doi: 10.3969/j.issn.1001-7852.2018.03.006

    Zheng Maihong, Hu Wenying, Wu Fengzhi. Evaluation of Landslide and Debris Flow in Changning County, Yunnan Based on OLI and ASTER GDEM Data[J]. Yunnan Geographic Environment Research, 2018, 30(3): 40-46 doi: 10.3969/j.issn.1001-7852.2018.03.006
    [5]
    沈焕锋, 刘露, 岳林蔚, 等. 多源DEM融合的高差拟合神经网络方法[J]. 测绘学报, 2018, 47(6): 854-863 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201806019.htm

    Shen Huanfeng, Liu Lu, Yue Linwei, et al. High Difference Fitting Neural Network Method for Multisource DEM Fusion[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6): 854-863 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201806019.htm
    [6]
    谢翠贞. 基于SRTM3 DEM与ASTER GDEM的DEM融合方法研究[D]. 南昌: 东华理工大学, 2015

    Xie Cuizhen. Research on DEM Fusion Method Based on SRTM3 DEM and ASTER GDEM[D]. Nanchang: Donghua University of Technology, 2015
    [7]
    赵海涛, 张兵, 左正立, 等. 中国及周边区域ASTER GDEM与SRTM DEM高程对比分析及互补修复[J]. 测绘科学, 2012, 37(1): 8-11 https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201201003.htm

    Zhao Haitao, Zhang Bing, Zuo Zhengli, et al. Comparative Analysis and Complementary Repair of ASTER GDEM and SRTM DEM Elevations in China and Surrounding Areas[J]. Science of Surveying and Mapping, 2012, 37(1): 8-11 https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201201003.htm
    [8]
    罗学彬, 李国明, 赵登文, 等. 基于SRTM DEM的ASTER GDEM数据修复方法研究[J]. 价值工程, 2017, 36(30): 187-189 https://www.cnki.com.cn/Article/CJFDTOTAL-JZGC201730079.htm

    Luo Xuebin, Li Guoming, Zhao Dengwen, et al. Research on Data Repair Method of ASTER GDEM Based on SRTM DEM[J]. Value Engineering, 2017, 36(30): 187-189 https://www.cnki.com.cn/Article/CJFDTOTAL-JZGC201730079.htm
    [9]
    张朝忙, 刘庆生, 刘高焕, 等. SRTM3与ASTER G-DEM数据处理及应用进展[J]. 地理与地理信息科学, 2012, 28(5): 29-34 https://www.cnki.com.cn/Article/CJFDTOTAL-DLGT201205008.htm

    Zhang Chaomang, Liu Qingsheng, Liu Gaohuan, et al. Progress in Data Processing and Application of SRTM3 and ASTER GDEM[J]. Geography and GeoInformation Science, 2012, 28(5): 29-34 https://www.cnki.com.cn/Article/CJFDTOTAL-DLGT201205008.htm
    [10]
    惠珊, 李远华. 回归与内插法处理ASTER GDEM数据异常值的研究[J]. 科学技术与工程, 2012, 12(22): 5 455-5 459 https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201222009.htm

    Hui Shan, Li Yuanhua. Research on Regression and Interpolation Method for Processing Outliers of ASTER GDEM Data[J]. Science Technology and Engineering, 2012, 12(22): 5 455-5 459 https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201222009.htm
    [11]
    杜小平, 郭华东, 范湘涛, 等. 基于ICESat/GLAS数据的中国典型区域SRTM与ASTER GDEM高程精度评价[J]. 地球科学——中国地质大学学报, 2013, 38(4): 887-897 https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201304023.htm

    Du Xiaoping, Guo Huadong, Fan Xiangtao, et al. Evaluation of Elevation Accuracy of SRTM and ASTER GDEM in Typical Regions of China Based on ICESat/GLAS Data[J]. Earth ScienceJournal of China University of Geosciences, 2013, 38(4): 887-897 https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201304023.htm
    [12]
    胡加佩, 关小荣, 刘学军. 中国区域SRTM DEM与ASTER GDEM误差空间分布特征[J]. 地理与地理信息科学, 2017, 33(4): 28-33 doi: 10.3969/j.issn.1672-0504.2017.04.005

    Hu Jiapei, Guan Xiaorong, Liu Xuejun. The Spatial Distribution Characteristics of SRTM DEM and ASTER GDEM Errors in China[J]. Geography and GeoInformation Science, 2017, 33(4): 28-33 doi: 10.3969/j.issn.1672-0504.2017.04.005
    [13]
    Satgé F, Bonnet M P, Timouk F, et al. Accuracy Assessment of SRTM v4 and ASTER GDEM v2 over the Altiplano Watershed Using ICESat/GLAS Data[J]. International Journal of Remote Sensing, 2015, 36(2): 465-488 doi: 10.1080/01431161.2014.999166
    [14]
    Gesch D, Oimoen M, Danielson J, et al. Validation of the ASTER Global Digital Elevation Model Version 3 over the Conterminous United States[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016(XLI-B4): 143-148
    [15]
    Tadono T, Takaku J, Shimada M. Validation Study on ALOS PRISM DSM MOSAIC and ASTER GDEM2[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2012(I-4): 193-198 http://adsabs.harvard.edu/abs/2012ISPAn..I4..193T
    [16]
    李振林, 王晶. ASTER GDEM与实测数据精度对比及其影响因素分析[J]. 测绘与空间地理信息, 2013, 36(11): 150-153 doi: 10.3969/j.issn.1672-5867.2013.11.047

    Li Zhenlin, Wang Jing. Analysis of Accuracy Comparison Between ASTER GDEM and Measured Data and Its Influencing Factors[J]. Surveying and Spatial Geography Information, 2013, 36(11): 150-153 doi: 10.3969/j.issn.1672-5867.2013.11.047
    [17]
    赵国松, 杜耘, 凌峰, 等. ASTER GDEM与SRTM3高程差异影响因素分析[J]. 测绘科学, 2012, 37(4): 167-170 https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201204057.htm

    Zhao Guosong, Du Yun, Ling Feng, et al. Analysis of Factors Affecting the Difference of ASTER GDEM and SRTM3 Elevation[J]. Science of Surveying and Mapping, 2012, 37(4): 167-170 https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201204057.htm
    [18]
    张玉伦, 王叶堂. 低山丘陵区多源数字高程模型误差分析[J]. 遥感技术与应用, 2018, 33(6): 1 112-1 121 https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS201806014.htm

    Zhang Yulun, Wang Yetang. Error Analysis of Multisource Digital Elevation Model in Low Mountain and Hilly Area[J]. Remote Sensing Technology and Application, 2018, 33(6): 1 112-1 121 https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS201806014.htm
    [19]
    Dong Youfu, Shortridge A M. A Regional ASTER GDEM Error Model for the Chinese Loess Plateau[J]. International Journal of Remote Sensing, 2019, 40(3): 1 048-1 065 doi: 10.1080/01431161.2018.1524171
    [20]
    Luana Shaopeng, Hou Xiyong, Wang Yetang. Assessing the Accuracy of SRTM DEM and ASTER GDEM Datasets for the Coastal Zone of Shandong Province, Eastern China[J]. Polish Maritime Research, 2015, 22(s1): 15-20 doi: 10.1515/pomr-2015-0026
    [21]
    Breiman L. Random Forests[J]. Machine Learning, 2001, 45(1): 5-32 doi: 10.1023/A:1010933404324
    [22]
    Suwandana E, Kawamura K, Sakuno Y, et al. Thematic Information Content Assessment of the ASTER GDEM: A Case Study of Watershed Delineation in West Java, Indonesia[J]. Remote Sensing Letters, 2012, 3(5): 423-432 doi: 10.1080/01431161.2011.593580
    [23]
    Zhang Quan, Yang Qinke, Wang Chunmei. SRTM Error Distribution and Its Associations with Landscapes Across China[J]. Photogrammetric Engineering & Remote Sensing, 2016, 82(2): 135-148 http://www.sciencedirect.com/science/article/pii/S0099111216300416
    [24]
    马延慈, 明艳芳, 王凯, 等. 基于高分辨率人工识别地表类型的GlobeLan-d30产品精度评价[J]. 山东科技大学学报(自然科学版), 2018, 37(5): 1-10, 26 https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY201805001.htm

    Ma Yanci, Ming Yanfang, Wang Kai, et al. Accuracy Evaluation of GlobeLand30 Products Based on High Resolution Artificial Recognition of Surface Types[J]. Journal of Shandong University of Science and Technology (Natural Science Edition), 2018, 37(5): 1-10, 26 https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY201805001.htm
    [25]
    郭海荣, 焦文海, 杨元喜. 1985国家高程基准与全球似大地水准面之间的系统差及其分布规律[J]. 测绘学报, 2004, 33(2): 100-104 doi: 10.3321/j.issn:1001-1595.2004.02.002

    Guo Hairong, Jiao Wenhai, Yang Yuanxi. The Systematic Difference and Its Distribution Between the 1985 National Height Datum and the Global Quasigeoid[J]. Acta Geodaetica et Cartographica Sinica, 2004, 33(2): 100-104 doi: 10.3321/j.issn:1001-1595.2004.02.002
    [26]
    Shortridge A, Messina J. Spatial Structure and Landscape Associations of SRTM Error[J]. Remote Sensing of Environment, 2011, 115(6): 1 576-1 587 doi: 10.1016/j.rse.2011.02.017
    [27]
    Kabacoff R I. R语言实战[M]. 北京: 人民邮电出版社, 2016

    Kabacoff R I. R in Action[M]. Beijing: Posts & Telecom Press, 2016
  • Related Articles

    [1]GUO Wenfei, ZHU Mengmeng, GU Shengfeng, ZUO Hongming, CHEN Jinxin. GNSS Precise Time-Frequency Receiver Clock Steering Model and Parameter Design Method[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1126-1133. DOI: 10.13203/j.whugis20220458
    [2]SUN Leyuan, YANG Jun, GUO Xiye, HUANG Wende. Frequency Performance Evaluation of BeiDou-3 Satellite Atomic Clocks[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20200486
    [3]WU Yiwei, YANG Bin, XIAO Shenghong, WANG Maolei. Atomic Clock Models and Frequency Stability Analyses[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1226-1232. DOI: 10.13203/j.whugis20180058
    [4]AN Xiangdong, CHEN Hua, JIANG Weiping, XIAO Yugang, ZHAO Wen. GLONASS Ambiguity Resolution Method Based on Long Baselines and Experimental Analysis[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5): 690-698. DOI: 10.13203/j.whugis20170091
    [5]LI Mingzhe, ZHANG Shaocheng, HU Youjian, HOU Weizhen. Comparison of GNSS Satellite Clock Stability Based on High Frequency Observations[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1490-1495, 1503. DOI: 10.13203/j.whugis20160537
    [6]WANG Ning, WANG Yupu, LI Linyang, ZHAI Shufeng, LV Zhiping. Stability Analysis of the Space-borne Atomic Clock Frequency for BDS[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1256-1263. DOI: 10.13203/j.whugis20150806
    [7]LIU Zhiqiang, YUE Dongjie, WANG Hu, ZHENG Dehua. An Approach for Real-Time GPS/GLONASS Satellite Clock Estimation with GLONASS Code Inter-Frequency Biases Compensation[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1209-1215. DOI: 10.13203/j.whugis20150542
    [8]HUANG Guanwen, YU Hang, GUO Hairong, ZHANG Juqing, FU Wenju, TIAN Jie. Analysis of the Mid-long Term Characterization for BDS On-orbit Satellite Clocks[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 982-988. DOI: 10.13203/j.whugis20140827
    [9]MAO Yue, CHEN Jianpeng, DAI Wei, JIA Xiaolin. Analysis of On-board Atomic Clock Stability Influences[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1182-1186.
    [10]GUO Hairong, YANG Yuanxi. Analyses of Main Error Sources on Time-Domain Frequency Stability for Atomic Clocks of Navigation Satellites[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 218-221.
  • Cited by

    Periodical cited type(10)

    1. 黄观文,曹钰,谭粤,谢威. GNSS星载原子钟在轨性能评估技术进展. 测绘地理信息. 2024(01): 20-28 .
    2. 蒋春华,朱美珍,薛慧杰,刘广盛. 基于长短时记忆神经网络的Multi-GNSS卫星钟差建模预报. 大地测量与地球动力学. 2024(03): 257-262 .
    3. 艾孝军,孙大伟,贾小林,郭栋,彭腾. GNSS星载原子钟性能评估与噪声分析模型算法研究. 无线电工程. 2023(05): 1041-1051 .
    4. 李方能,梁益丰,许江宁,吴苗. BDS/GPS新型铷原子钟长期特性分析. 中国惯性技术学报. 2023(05): 452-461 .
    5. 张润哲,刘雪娇,王全喜. 基于方位导引的无人僚机着舰进近引导技术研究. 现代导航. 2023(06): 416-421 .
    6. 龚明杰. GPS与GLONASS多频组合伪距单点定位精度分析. 测绘与空间地理信息. 2022(02): 115-117+122 .
    7. 樊礼谦,焦文海,蔡洪亮,周巍,徐颖,周舒涵. 北斗三号卫星钟长期稳定性分析. 导航定位学报. 2022(04): 11-19 .
    8. 李特,张为成,王建敏,李秀海. 基于不同评价指标的北斗星载原子钟特性分析. 黑龙江工程学院学报. 2022(04): 1-7 .
    9. 伏军胜,贾小林,刘家龙,许瑾,贺延伟,张奋. BDS-3卫星与其他GNSS系统卫星原子钟性能分析. 真空与低温. 2022(05): 615-622 .
    10. 齐艳丽. 北斗星载原子钟频率稳定度评估. 科技视界. 2022(29): 83-85 .

    Other cited types(11)

Catalog

    Article views (1202) PDF downloads (106) Cited by(21)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return