WANG Shuliang, LI Dapeng, ZHAO Boxiang, GENG Jing, ZHANG Wei, WANG Hailei. Recent Trends in Chatbots[J]. Geomatics and Information Science of Wuhan University, 2021, 46(2): 296-302. DOI: 10.13203/j.whugis20190177
Citation: WANG Shuliang, LI Dapeng, ZHAO Boxiang, GENG Jing, ZHANG Wei, WANG Hailei. Recent Trends in Chatbots[J]. Geomatics and Information Science of Wuhan University, 2021, 46(2): 296-302. DOI: 10.13203/j.whugis20190177

Recent Trends in Chatbots

Funds: 

The National Key Research and Development Program of China 2016YFB0502600

Beijing Municipal Science and Technology Project Z171100005117002

the Open Fund of Key Laboratory for National Geographic Census and Monitoring, National Administration of Surveying, Mapping and Geoinformation 2017NGCMZD03

More Information
  • Author Bio:

    WANG Shuliang, PhD, professor, specializes in theories and applications of spatial data mining. E-mail: slwang2011@bit.edu.cn

  • Corresponding author:

    LI Dapeng, PhD candidate. E-mail: dapengli@bit.edu.cn

  • Received Date: June 01, 2019
  • Published Date: February 04, 2021
  • The dialogue system has become an important human-computer interaction interface in artificial intelligence. Chatbots technology plays a vital role in the development of dialogue system technology and represents the frontier development of dialogue system technology. In this paper, we analyze the emerging of chatbots and recent trends in chatbots. When introducing the research progress of chatbots technology in academia and industry, special emphasis is placed on the three key technologies of chatbots. They include multi-turn response selection model in retrieval-based chatbots, response generation model in generation-based chatbots and dialogue model based on deep integration of retrieval and generation. The future development is prospected by analyzing the problems in the chatbots technology.
  • [1]
    段楠, 周明.智能问答[M].北京:高等教育出版社, 2018

    Duan Nan, Zhou Ming. Question Answering[M]. Beijing: Higher Education Press, 2018
    [2]
    张伟.聊天机器人中对话管理关键技术研究[D].北京: 北京理工大学, 2017

    Zhang Wei. Research on Session Management of Chatbot[D]. Beijing: Beijing Institute of Technology, 2017
    [3]
    李德仁.脑认知与空间认知——论空间大数据与人工智能的集成[J].武汉大学学报·信息科学版, 2018, 43(12): 1 761-1 767 doi: 10.13203/j.whugis20180411

    Li Deren. Brain Cognition and Spatial Cognition: On Integration of Geo-spatial Big Data and Artificial Intelligence[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1 761-1 767 doi: 10.13203/j.whugis20180411
    [4]
    Wu Y, Wu W, Xing C, et al. Sequential Matching Network: A New Architecture for Multi-turn Response Selection in Retrieval-based Chatbots[C]. The 55th Annual Meeting of the Association for Computational Linguistics (ACL'17), Vancouver, Canada, 2017 https://www.researchgate.net/publication/311458189_Sequential_Match_Network_A_New_Architecture_for_Multi-turn_Response_Selection_in_Retrieval-based_Chatbots
    [5]
    LeCun Y, Bengio Y, Hinton G. Deep Learning[J]. Nature, 2019, 521(7 553): 436-444
    [6]
    龚健雅.人工智能时代测绘遥感技术的发展机遇与挑战[J].武汉大学学报·信息科学版, 2018, 43(12): 1 788-1 796 doi: 10.13203/j.whugis20180082

    Gong Jianya. Chances and Challenges for Development of Surveying and Remote Sensing in the Age of Artificial Intelligence[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1 788-1 796 doi: 10.13203/j.whugis20180082
    [7]
    Young T, Hazarika D, Poria S, et al. Recent Trends in Deep Learning Based Natural Language Processing [EB/OL]. https://arxiv.org/pdf/1708.02709.pdf, 2018
    [8]
    Deng L, Liu Y. Deep Learning in Natural Language Processing[M]. Singapore: Springer, 2018
    [9]
    Shum H Y, He X D, Li D. From Eliza to XiaoIce: Challenges and Opportunities with Social Chatbots[J]. Frontiers of Information Technology & Electronic Engineering, 2018, 19(1): 10-26 http://en.cnki.com.cn/Article_en/CJFDTotal-JZUS201801004.htm
    [10]
    Serban I V, Sankar C, Germain M, et al. A Deep Reinforcement Learning Chatbot[EB/OL]. https://arxiv.org/pdf/1709.02349.pdf, 2017
    [11]
    Ji Z C, Lu Z D, Li H. An Information Retrieval Approach to Short Text Conversation[EB/OL]. https://arxiv.org/pdf/1408.6988.pdf, 2014
    [12]
    Wu Y, Wu W, Li Z J, et al. Topic Augmented Neural Network for Short Text Conversation[EB/OL]. https://arxiv.org/pdf/1605.00090v1.pdf, 2016
    [13]
    Wang S L, Li D P, Geng J, et al. Learning Bi-utterance for Multi-turn Response Selection in Retrieval-based Chatbots[J]. International Journal of Advanced Robotic Systems, 2019, 16(2): 1-10
    [14]
    Shang L F, Lu Z D, Li H. Neural Responding Machine for Short-Text Conversation[C]. The 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (ACL'15 & IJCNLP'15), Beijing, China, 2015
    [15]
    Vinyals O, Le Q. A Neural Conversational Model[EB/OL]. https://arxiv.org/pdf/1506.05869.pdf, 2015
    [16]
    Serban I V, Sordoni A, Bengio Y, et al. Building End-To-End Dialogue Systems Using Generative Hierarchical Neural Network Models[C]. The 30th AAAI Conference on Artificial Intelligence (AAAI'16), Phoenix, USA, 2016
    [17]
    Lowe R, Pow N, Serban I, et al. The Ubuntu Dialogue Corpus: A Large Dataset for Research in Unstructured Multi-turn Dialogue Systems[C]. The 16th Annual Meeting of the Special Interest Group on Discourse and Dialogue (SIGDIAL'15), Prague, Czech Republic, 2015 10.18653/v1/W15-4640
    [18]
    Kadlec R, Schmid M, Kleindienst J. Improved Deep Learning Baselines for Ubuntu Corpus Dialogs[EB/OL]. https://arxiv.org/pdf/1510.03753.pdf, 2015
    [19]
    Yan R, Song Y P, Wu H. Learning to Respond with Deep Neural Networks for Retrieval-Based Human-Computer Conversation System[C]. The 39th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR'16), Pisa, Italy, 2016
    [20]
    Zhou X Y, Dong D X, Wu H, et al. Multi-view Response Selection for Human-Computer Conversation[C]. The 2016 Conference on Empirical Methods in Natural Language Processing (EMNLP'16), Austin, Texas, USA, 2016 https://www.researchgate.net/publication/311990210_Multi-view_Response_Selection_for_Human-Computer_Conversation
    [21]
    Zhou X Y, Li L, Dong D X, et al. Multi-turn Response Selection for Chatbots with Deep Attention Matching Network[C]. The 56th Annual Meeting of the Association for Computational Linguistics (ACL'18), Melbourne, Australia, 2018
    [22]
    Vaswani A, Shazeer N, Parmar N, et al. Attention is All You Need[EB/OL]. https://arxiv.org/pdf/1706.03762.pdf, 2017
    [23]
    Zhang Z S, Li J T, Zhu P F, et al. Modeling Multi-turn Conversation with Deep Utterance Aggregation[C]. The 27th International Conference on Computational Linguistics (COLING'18), Santa Fe, New Mexico, USA, 2018 https://www.researchgate.net/publication/325986399_Modeling_Multi-turn_Conversation_with_Deep_Utterance_Aggregation
    [24]
    Sutskever I, Vinyals O, Le Q V. Sequence to Sequence Learning with Neural Networks[C]. The 27th International Conference on Neural Information Processing Systems (NIPS'14), Montreal, Quebec, Canada, 2014 https://www.researchgate.net/publication/319770465_Sequence_to_Sequence_Learning_with_Neural_Networks
    [25]
    Li J W, Galley M, Brockett C, et al. A Diversity-Promoting Objective Function for Neural Conversation Models[C]. The 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL HLT'16), San Diego, California, USA, 2016
    [26]
    Serban I V, Sordoni A, Lowe R, et al. A Hierarchical Latent Variable Encoder-Decoder Model for Generating Dialogues[C]. The 31st AAAI Conference on Artificial Intelligence (AAAI'17), San Francisco, California, USA, 2017 https://www.researchgate.net/publication/303367454_A_Hierarchical_Latent_Variable_Encoder-Decoder_Model_for_Generating_Dialogues
    [27]
    Zhou G B, Luo P, Cao R Y, et al. Mechanism-Aware Neural Machine for Dialogue Response Generation[C]. The 31st AAAI Conference on Artificial Intelligence (AAAI'17), San Francisco, California, USA, 2017 https://www.researchgate.net/publication/322063466_Mechanism-aware_Neural_Machine_for_Dialogue_Response_Generation
    [28]
    Xing C, Wu W, Wu Y, et al. Topic Augmented Neural Response Generation with a Joint Attention Mechanism[EB/OL]. https://arxiv.org/pdf/1606.08340.pdf, 2016
    [29]
    Wu Y, Wu W, Yang D J, et al. Neural Response Generation with Dynamic Vocabularies[C]. The 32nd AAAI Conference on Artificial Intelligence (AAAI'18), New Orleans, Louisiana, USA, 2018 https://www.researchgate.net/publication/321417572_Neural_Response_Generation_with_Dynamic_Vocabularies
    [30]
    Li J W, Monroe W, Ritter A, et al. Deep Reinforcement Learning for Dialogue Generation[C]. The 2016 Conference on Empirical Methods in Natural Language Processing (EMNLP'16), Austin, Texas, USA, 2016 https://www.researchgate.net/publication/303821939_Deep_Reinforcement_Learning_for_Dialogue_Generation
    [31]
    Li J W, Monroe W, Shi T L, et al. Adversarial Learning for Neural Dialogue Generation[C]. The 2017 Conference on Empirical Methods in Natural Language Processing (EMNLP'17), Copenhagen, Denmark, 2017
    [32]
    Song Y P, Yan R, Li X, et al. Two are Better than One: An Ensemble of Retrieval-and Generation-Based Dialog Systems[EB/OL]. https://arxiv.org/pdf/1610.07149.pdf, 2016
    [33]
    Wu Y, Wei F R, Huang S H, et al. Response Generation by Context-Aware Prototype Editing[C]. The 33rd AAAI Conference on Artificial Intelligence (AAAI'19), Honolulu, Hawaii, USA, 2019
  • Related Articles

    [1]HU Deyong, QIAO Kun, WANG Xingling, ZHAO Limin, JI Guohua. Comparison of Three Single-window Algorithms for Retrieving Land-Surface Temperature with Landsat 8 TIRS Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 869-876. DOI: 10.13203/j.whugis20150164
    [2]FENG Qi, CHENG Xuejun, SHEN Xin, XIAO Xiao, WANG Lihui, ZHANG Wen. Inland Riverine Turbidity Estimation for Hanjiang River with Landsat 8 OLI Imager[J]. Geomatics and Information Science of Wuhan University, 2017, 42(5): 643-647. DOI: 10.13203/j.whugis20141002
    [3]WANG Yuzhuo, LIU Xiuguo, ZHANG Wei. Raster River Networks Extraction Based on Parallel Multiple Flow Direction Algorithms[J]. Geomatics and Information Science of Wuhan University, 2015, 40(12): 1646-1652,1682. DOI: 10.13203/j.whugis20140645
    [4]LI Yuguang, LI Qingquan. A Fast Algorithm for Huge Volume Floating Car Data Map-Matching:A Vector to Raster Map Conversion Approach[J]. Geomatics and Information Science of Wuhan University, 2014, 39(6): 724-728. DOI: 10.13203/j.whugis20140071
    [5]DONG Jian, PENG Rencan, CHEN Yi, LI Ning. An Algorithm for Centre Line Generation Based on Model of Approaching Intersection of Buffering Borderline from Reciprocal Direction[J]. Geomatics and Information Science of Wuhan University, 2011, 36(9): 1120-1123.
    [6]ZHANG Junfeng, FEI Lifan, HUANG Lina, LIU Yining. Real-Time Dynamic Rendering Algorithm of Terrain Using 3D_DP Method and Quad_TIN Model[J]. Geomatics and Information Science of Wuhan University, 2011, 36(3): 346-350.
    [7]LAN Qiuping, FEI Lifan, LIU Yining. An Approach on Calculating Firn Volume Change from Multi-temporal DEMs[J]. Geomatics and Information Science of Wuhan University, 2010, 35(10): 1222-1225.
    [8]HUANG Lina, FEI Lifan. Experimental Investigation on the Three Dimension Generalization of Contour Lines using 3D D-P Algorithm[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 55-58.
    [9]YAN Huiwu, ZHU Guorui, XU Zhiyong, GAO Shan. Volume Rendering and 3D Modeling of Hydrogeologic Layer Based on Kriging Algorithm[J]. Geomatics and Information Science of Wuhan University, 2004, 29(7): 611-614.
    [10]CHENG Penggen, GONG Jianya, SHI Wenzhong, LIU Shaohua. Geological Object Modeling Based on Quasi Tri-prism Volume and Its Application[J]. Geomatics and Information Science of Wuhan University, 2004, 29(7): 602-307.
  • Cited by

    Periodical cited type(17)

    1. 冉烽均,龚川. 基于OpenStreetMap数据的土地利用制图. 北京测绘. 2024(02): 238-244 .
    2. 樊潇. 以建立草原公园为抓手,推动牧区草原转型升级. 中国草食动物科学. 2022(01): 61-64 .
    3. 李霞,潘冬荣,孙斌,姜佳昌,俞慧云,王红霞,杜笑村,吴丹丹. 甘肃省草地退化概况分析——基于甘肃省第一、二次草原普查数据. 草业科学. 2022(03): 485-494 .
    4. 刘志刚,关文昊,何国兴,蒲小鹏,纪童,杨军银,李强,柳小妮. 黄河源5种高寒植物光谱特征分析及识别. 草原与草坪. 2022(04): 23-30 .
    5. 申紫雁,刘昌义,胡夏嵩,周林虎,许桐,李希来,李国荣. 黄河源区高寒草地不同深度土壤理化性质与抗剪强度关系研究. 干旱区研究. 2021(02): 392-401 .
    6. 王俊奇,王广军,梁四海,杜海波,彭红明. 1996—2015年黄河源区植被覆盖度提取和时空变化分析. 冰川冻土. 2021(02): 662-674 .
    7. 朱宁,王浩,宁晓刚,刘娅菲. 草地退化遥感监测研究进展. 测绘科学. 2021(05): 66-76 .
    8. 沈贝贝,侯路路,丁蕾,范蓓蕾,毛平平,徐大伟,闫瑞瑞,辛晓平,陈金强. 数字牧场研究进展浅析. 中国农业信息. 2021(05): 1-11 .
    9. 刘炜,孙海霞,杨晓波. 基于高光谱图像的协同分层波谱识别——以兰州、榆林地区为例. 红外与毫米波学报. 2020(01): 99-110 .
    10. 韩万强,靳瑰丽,岳永寰,王惠宁,宫珂,吴雪儿,吾鲁帕·阿得尔卡里. 伊犁绢蒿荒漠草地3种主要植物光谱及植被指数改进. 新疆农业科学. 2020(05): 950-957 .
    11. 刘炜,孙海霞,杨晓波,董建民. 对数变换、导数变换的高寒草地反射光谱特征分析与识别——以那曲地区HJ-1A/HSI图像为例. 光谱学与光谱分析. 2020(07): 2200-2207 .
    12. 董元,董梦,单莹. 基于高光谱遥感的树种识别. 华北理工大学学报(自然科学版). 2020(04): 11-16 .
    13. 付晶莹,彭婷,江东,林刚,边鹏,韩昊. 草地资源立体观测研究进展与理论框架. 资源科学. 2020(10): 1932-1943 .
    14. 苏玥. 基于遥感的草地退化研究综述. 内蒙古科技与经济. 2019(06): 53-54+56 .
    15. 查向浩,王玉洁,李有文,王超,莫治新. 草地土壤碳密度研究进展. 北方园艺. 2019(09): 159-163 .
    16. 王云艳,罗冷坤,周志刚. 改进型DeepLab的极化SAR果园分类. 中国图象图形学报. 2019(11): 2035-2044 .
    17. 张良培,刘蓉,杜博. 使用量子优化算法进行高光谱遥感影像处理综述. 武汉大学学报(信息科学版). 2018(12): 1811-1818 .

    Other cited types(9)

Catalog

    Article views (1937) PDF downloads (240) Cited by(26)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return