LU Lejun, ZHOU Yu. Extracting Surface Displacements of Historical Earthquakes Using KH-9 Satellite Images: A Case Example of 1976 Chaldiran Earthquake, Turkey[J]. Geomatics and Information Science of Wuhan University, 2021, 46(2): 289-295. DOI: 10.13203/j.whugis20190071
Citation: LU Lejun, ZHOU Yu. Extracting Surface Displacements of Historical Earthquakes Using KH-9 Satellite Images: A Case Example of 1976 Chaldiran Earthquake, Turkey[J]. Geomatics and Information Science of Wuhan University, 2021, 46(2): 289-295. DOI: 10.13203/j.whugis20190071

Extracting Surface Displacements of Historical Earthquakes Using KH-9 Satellite Images: A Case Example of 1976 Chaldiran Earthquake, Turkey

Funds: 

The Second Tibetan Scientific Expedition and Research Program (STEP) 2019QZKK0901

the National Natural Science Foundation of China 41874020

the National Key Research and Development Program of China 2017YFC1500101

Guangdong Province Introduced Innovative Research and Development Team of Geological Processes and Natural Disasters Around the South China Sea 2016ZT06N331

More Information
  • Author Bio:

    LU Lejun, PhD candidate, specializes in tectonic geodesy. E-mail: lulj8@mail2.sysu.edu.cn

  • Corresponding author:

    ZHOU Yu, PhD, professor. E-mail: zhouyu36@mail.sysu.edu.cn

  • Received Date: September 03, 2019
  • Published Date: February 04, 2021
  • Surface ruptures and deformation of large earthquakes are important for investigating earthquake mechanisms, fault activities and continental deformation. With the improvement of satellite techniques, optical and radar images have been widely used in earthquake studies since the 1992 Landers earthquake. However, due to a lack of pre-earthquake images, historical earthquakes prior to the 1990s are rarely studied. Recent declassification of American KeyHole (KH) satellite images opened up new possibilities of investigating old earthquakes back to the 1970s. Researchers have successfully applied KH-9 images to the 1978 Tabas-e-Golshan and 1979 Khuli-Boniabad earthquakes in Iran, and gained some new insights into fault behaviours. We first provided a review of the methodology and progresses of using KH-9 images to measure earthquake deformation, then investigated the 1976 Chaldiran, Turkey earthquake by matching the pre- and post-earthquake KH-9 images, and obtained an E-W displacement of about (3.1±0.7) m (i.e. strike-slip), consistent with the measurements in the field. KH-9 imagery provides a new means of investigating historical earthquakes in detail, but there are some limitations. These limitations are briefly discussed in the end.
  • [1]
    Zhang P Z. Beware of Slowly Slipping Faults[J]. Nature Geoscience, 2013, 6(5): 323-324 doi: 10.1038/ngeo1811
    [2]
    Massonnet D, Rossi M, Carmona C, et al. The Displacement Field of the Landers Earthquake Mapped by Radar Interferometry[J]. Nature, 1993, 364(6 433): 138-142
    [3]
    Zhou Y, Walker R T, Hollingsworth J, et al. Coseismic and Postseismic Displacements from the 1978 Mw 7.3 Tabas-e-Golshan Earthquake in Eastern Iran[J]. Earth and Planetary Science Letters, 2016, 452: 185-196 doi: 10.1016/j.epsl.2016.07.038
    [4]
    Marchandon M, Vergnolle M, Cavalié O, et al. Earthquake Sequence in the NE Lut, Iran: Observations from Multiple Space Geodetic Techniques[J]. Geophysical Journal International, 2018, 215(3): 1 604-1 621 doi: 10.1093/gji/ggy364
    [5]
    赵秋艳.美国成像侦查卫星的发展[J].光机电信息, 2001(10): 15-23 doi: 10.3969/j.issn.1007-1180.2001.10.003

    Zhao Qiuyan. Development of American Imaging Reconnaissance Satellites[J]. OME Information, 2001(10): 15-23 doi: 10.3969/j.issn.1007-1180.2001.10.003
    [6]
    王鑫, 张景发, 姜文亮, 等.美国锁眼侦查卫星遥感数据在活动断层研究中的应用——以郯庐断裂带江苏段为例[J].遥感学报, 2018, 22(S1): 233-246

    Wang Xin, Zhang Jingfa, Jiang Wenliang, et al. Application of Keyhole Satellite Data in Active Fault Study: A Case Example of Jiangsu Segment of Tan-Lu Fault Zone[J]. Journal of Remote Sensing, 2018, 22(S1): 233-246
    [7]
    Pressel P. Spy in the Sky: The KH-9 Hexagon[J]. Optics and Photonics News, 2013, 24(10): 28-35 doi: 10.1364/OPN.24.10.000028
    [8]
    Surazakov A, Aizen V. Positional Accuracy Evaluation of Declassified Hexagon KH-9 Mapping Camera Imagery[J]. Photogrammetric Engineering & Remote Sensing, 2010, 76(5): 603-608 doi: 10.14358/PERS.76.5.603
    [9]
    Burnett M G. Hexagon (KH-9)–Mapping Camera Program and Evolution [M]. Chantilly: Center for the Study of National Reconnaissance(CSNR), 2012
    [10]
    Guillemette R. Declassified US Spy Satellites Reveal Rare Look at Secret Cold War Space Program[EB/OL]. http://www.space.com/12996-secret-spy-satellites-declassified-nro.html, 2011
    [11]
    Hanies G K. Critical to US Security: The Development of the GAMBIT and HEXAGON Satellite Reconnaissance System[M]. Chantilly: National Reconnaissance Office, 2012
    [12]
    Fowler M J. The Archaeological Potential of Declassified Hexagon KH-9 Panoramic Camera Satellite Photographs[J]. AARGnews, 2016, 53: 30-36 https://www.researchgate.net/publication/308684304_The_archaeological_potential_of_declassified_HEXAGON_KH-9_panoramic_camera_satellite_photographs
    [13]
    杨士超.子像素偏移追踪算法及其在实际地震同震形变场监测中的应用[D].合肥: 中国科学技术大学, 2015

    Yang Shichao. Sub-pixel Offset Tracking Algorithm and Its Application to Detection the Co-seismic Deformation of Real Earthquakes[D]. Hefei: University of Science and Technology of China, 2015
    [14]
    孙家柄.遥感原理与应用[M].武汉:武汉大学出版社, 2009

    Sun Jiabing. Principles and Applications of Remote Sensing[M]. Wuhan:Wuhan University Press, 2009
    [15]
    Leprince S, Barbot S, Ayoub F, et al. Automatic and Precise Orthorectification, Coregistration, and Subpixel Correlation of Satellite Images, Application to Ground Deformation Measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(6): 1 529-1 558 doi: 10.1109/TGRS.2006.888937
    [16]
    Copley A. Postseismic Afterslip 30 Years After the 1978 Tabas-e-Golshan (Iran) Earthquake: Observations and Implications for the Geological Evolution of Thrust Belts[J]. Geophysical Journal International, 2014, 197(2): 665-679 doi: 10.1093/gji/ggu023
    [17]
    李怀英.外电外刊对1978年9月16日伊朗塔巴斯地震的有关报道及评论(综合汇编)[J].国际地震动态, 1979, 5: 4-6 http://www.cnki.com.cn/Article/CJFDTotal-GJZT197905001.htm

    Li Huaiying. The Reports and Comments About the September 16th, 1978 Tabas, Iran Earthquake from Foreign News[J]. Recent Developments in World Seismology, 1979, 5: 4-6 http://www.cnki.com.cn/Article/CJFDTotal-GJZT197905001.htm
    [18]
    Walker R, Jackson J, Baker C. Surface Expression of Thrust Faulting in Eastern Iran: Source Parameters and Surface Deformation of the 1978 Tabas and 1968 Ferdows Earthquake Sequences[J]. Geophysical Journal International, 2003, 152(3): 749-765 doi: 10.1046/j.1365-246X.2003.01886.x
    [19]
    Ibrion M, Mokhtari M, Nadim F. Earthquake Disaster Risk Reduction in Iran: Lessons and "Lessons Learned" from Three Large Earthquake Disasters—Tabas 1978, Rudbar 1990, and Bam 2003[J]. International Journal of Disaster Risk Science, 2015, 6(4): 415-427 doi: 10.1007/s13753-015-0074-1
    [20]
    Berberian M. Earthquake Faulting and Bedding Thrust Associated with the Tabas-e-Golshan (Iran) Earthquake of September 16, 1978[J]. Bulletin of the Seismological Society of America, 1979, 69(6): 1 861-1 887
    [21]
    Nowroozi A A, Mohajer‐Ashjai A. Fault Movements and Tectonics of Eastern Iran: Boundaries of the Lut Plate[J]. Geophysical Journal of the Royal Astronomical Society, 1985, 83(1): 215-237 doi: 10.1111/j.1365-246X.1985.tb05164.x
    [22]
    Gulkan P, Gurpinar A, Celebi M, et al. Engineering Report on the Muradiye-Çaldiran, Turkey, Earthquake of 24 November 1976[M]. Washington D C: National Academy of Sciences, 1978
    [23]
    Selçuk A S, Erturaç M K, Nomade S. Geology of the Çaldıran Fault, Eastern Turkey: Age, Slip Rate and Implications on the Characteristic Slip Behaviour[J]. Tectonophysics, 2016, 680: 155-173 doi: 10.1016/j.tecto.2016.05.019
    [24]
    Reilinger R, McClusky S, Vernant P, et al. GPS Constraints on Continental Deformation in the Africa‐Arabia‐Eurasia Continental Collision Zone and Implications for the Dynamics of Plate Interactions[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B5): B05411
    [25]
    Toksöz M N, Arpat E, Şaroglu F. East Anatolian Earthquake of 24 November 1976[J]. Nature, 1977, 270(5 636): 423-425 https://www.nature.com/articles/270423b0
    [26]
    Toksöz M N, Nábělek J, Arpat E. Source Properties of the 1976 Earthquake in East Turkey: A Comparison of Field Data and Teleseismic Results[J]. Tectonophysics, 1978, 49(3-4): 199-205 doi: 10.1016/0040-1951(78)90178-6
    [27]
    Wells D L, Coppersmith K J. New Empirical Relationships Among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement[J]. Bulletin of the Seismological Society of America, 1994, 84(4): 974-1 002
  • Related Articles

    [1]MA Jingzhen, SUN Qun, WEN Bowei, ZHOU Zhao, LU Chuanwei, LÜ Zheng, SUN Shijie. A Hybrid Multi-feature Road Network Selection Method Based on Trajectory Data[J]. Geomatics and Information Science of Wuhan University, 2022, 47(7): 1009-1016. DOI: 10.13203/j.whugis20190480
    [2]YANG Hao, HE Zongyi, CHEN Huayang, ZHOU Zhuanxiang, FAN Yong. A Method for Automatic Generalization of Urban Settlements Considering Road Network[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6): 965-970. DOI: 10.13203/j.whugis20160094
    [3]CAO Weiwei, ZHANG Hong, HE Jing, LAN Tian. Road Selection Considering Structural and Geometric Properties[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 520-524. DOI: 10.13203/j.whugis20140862
    [4]YANG Lin, WAN Bo, WANG Run, ZUO Zejun, AN Xiaoya. Matching Road Network Based on the Structural Relationship Constraint of Hierarchical Strokes[J]. Geomatics and Information Science of Wuhan University, 2015, 40(12): 1661-1668. DOI: 10.13203/j.whugis20140295
    [5]tianjin g, renchan g, wangyihen g, xiongfu q uan, leiyin g zhe. imp rovementofself-best-fitstrate gyforstrokebuildin g[J]. Geomatics and Information Science of Wuhan University, 2015, 40(9): 1209-1214. DOI: 10.13203/j .whu g is20140455
    [6]LIU Hailong, QIAN Haizhong, WANG Xiao, HE Haiwei. Road Networks Global Matching Method Using Analytical Hierarchy Process[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5): 644-651. DOI: 10.13203/j.whugis20130350
    [7]TIAN Jing, HE Qingsong, YAN Fen. Formalization and New Algorithm of stroke Generation in Road Networks[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5): 556-560. DOI: 10.13203/j.whugis20120127
    [8]TIAN Jing, WU Dang, ZHAN Yifei. Degree Correlation of Urban Street Networks[J]. Geomatics and Information Science of Wuhan University, 2014, 39(3): 332-334. DOI: 10.13203/j.whugis20120675
    [9]CHEN Jun, HU Yungang, ZHAO Renliang, LI Zhilin. Road Data Updating Based on Map Generalization[J]. Geomatics and Information Science of Wuhan University, 2007, 32(11): 1022-1027.
    [10]HUANG Shuqiang, SUN Chengzhi, FU Zhongliang. License Plate Binarization Algorithm Based on the Features of Characters' Strokes[J]. Geomatics and Information Science of Wuhan University, 2003, 28(1): 71-73,79.
  • Cited by

    Periodical cited type(9)

    1. 赵天明,孙群,马京振,张付兵,温伯威. 融合路段和stroke特征的道路自动选取方法. 地球信息科学学报. 2024(12): 2673-2685 .
    2. 郭漩,钱海忠,王骁,刘俊楠,任琰,赵钰哲,陈国庆. 多源道路智能选取的本体知识推理方法. 测绘学报. 2022(02): 279-289 .
    3. 马京振,孙群,温伯威,周炤,陆川伟,吕峥,孙士杰. 结合轨迹数据的混合多特征道路网选取方法. 武汉大学学报(信息科学版). 2022(07): 1009-1016 .
    4. 朱余德,杨敏,晏雄锋. 利用图卷积神经网络的道路网选取方法. 北京测绘. 2022(11): 1455-1459 .
    5. 韩远,王中辉,徐智邦,余贝贝. 结合引力场理论的道路自动选取方法. 测绘科学. 2021(01): 189-195 .
    6. 韩远,王中辉,禄小敏. POI辅助下的道路选取. 测绘科学. 2021(04): 165-171 .
    7. 陈晓东,余劲松弟. 顾及语义关联信息的道路选取方法. 海南大学学报(自然科学版). 2021(03): 227-234 .
    8. 王晓妍. 土地利用图中线状要素综合的质量评价. 测绘通报. 2020(04): 116-120 .
    9. 冯云,朱素华,孙益清,王金鑫. 郑州轨道交通5号线开通对城市交通格局的影响. 城市勘测. 2020(04): 54-58 .

    Other cited types(11)

Catalog

    Article views (1390) PDF downloads (107) Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return