LU Lejun, ZHOU Yu. Extracting Surface Displacements of Historical Earthquakes Using KH-9 Satellite Images: A Case Example of 1976 Chaldiran Earthquake, Turkey[J]. Geomatics and Information Science of Wuhan University, 2021, 46(2): 289-295. DOI: 10.13203/j.whugis20190071
Citation: LU Lejun, ZHOU Yu. Extracting Surface Displacements of Historical Earthquakes Using KH-9 Satellite Images: A Case Example of 1976 Chaldiran Earthquake, Turkey[J]. Geomatics and Information Science of Wuhan University, 2021, 46(2): 289-295. DOI: 10.13203/j.whugis20190071

Extracting Surface Displacements of Historical Earthquakes Using KH-9 Satellite Images: A Case Example of 1976 Chaldiran Earthquake, Turkey

Funds: 

The Second Tibetan Scientific Expedition and Research Program (STEP) 2019QZKK0901

the National Natural Science Foundation of China 41874020

the National Key Research and Development Program of China 2017YFC1500101

Guangdong Province Introduced Innovative Research and Development Team of Geological Processes and Natural Disasters Around the South China Sea 2016ZT06N331

More Information
  • Author Bio:

    LU Lejun, PhD candidate, specializes in tectonic geodesy. E-mail: lulj8@mail2.sysu.edu.cn

  • Corresponding author:

    ZHOU Yu, PhD, professor. E-mail: zhouyu36@mail.sysu.edu.cn

  • Received Date: September 03, 2019
  • Published Date: February 04, 2021
  • Surface ruptures and deformation of large earthquakes are important for investigating earthquake mechanisms, fault activities and continental deformation. With the improvement of satellite techniques, optical and radar images have been widely used in earthquake studies since the 1992 Landers earthquake. However, due to a lack of pre-earthquake images, historical earthquakes prior to the 1990s are rarely studied. Recent declassification of American KeyHole (KH) satellite images opened up new possibilities of investigating old earthquakes back to the 1970s. Researchers have successfully applied KH-9 images to the 1978 Tabas-e-Golshan and 1979 Khuli-Boniabad earthquakes in Iran, and gained some new insights into fault behaviours. We first provided a review of the methodology and progresses of using KH-9 images to measure earthquake deformation, then investigated the 1976 Chaldiran, Turkey earthquake by matching the pre- and post-earthquake KH-9 images, and obtained an E-W displacement of about (3.1±0.7) m (i.e. strike-slip), consistent with the measurements in the field. KH-9 imagery provides a new means of investigating historical earthquakes in detail, but there are some limitations. These limitations are briefly discussed in the end.
  • [1]
    Zhang P Z. Beware of Slowly Slipping Faults[J]. Nature Geoscience, 2013, 6(5): 323-324 doi: 10.1038/ngeo1811
    [2]
    Massonnet D, Rossi M, Carmona C, et al. The Displacement Field of the Landers Earthquake Mapped by Radar Interferometry[J]. Nature, 1993, 364(6 433): 138-142
    [3]
    Zhou Y, Walker R T, Hollingsworth J, et al. Coseismic and Postseismic Displacements from the 1978 Mw 7.3 Tabas-e-Golshan Earthquake in Eastern Iran[J]. Earth and Planetary Science Letters, 2016, 452: 185-196 doi: 10.1016/j.epsl.2016.07.038
    [4]
    Marchandon M, Vergnolle M, Cavalié O, et al. Earthquake Sequence in the NE Lut, Iran: Observations from Multiple Space Geodetic Techniques[J]. Geophysical Journal International, 2018, 215(3): 1 604-1 621 doi: 10.1093/gji/ggy364
    [5]
    赵秋艳.美国成像侦查卫星的发展[J].光机电信息, 2001(10): 15-23 doi: 10.3969/j.issn.1007-1180.2001.10.003

    Zhao Qiuyan. Development of American Imaging Reconnaissance Satellites[J]. OME Information, 2001(10): 15-23 doi: 10.3969/j.issn.1007-1180.2001.10.003
    [6]
    王鑫, 张景发, 姜文亮, 等.美国锁眼侦查卫星遥感数据在活动断层研究中的应用——以郯庐断裂带江苏段为例[J].遥感学报, 2018, 22(S1): 233-246

    Wang Xin, Zhang Jingfa, Jiang Wenliang, et al. Application of Keyhole Satellite Data in Active Fault Study: A Case Example of Jiangsu Segment of Tan-Lu Fault Zone[J]. Journal of Remote Sensing, 2018, 22(S1): 233-246
    [7]
    Pressel P. Spy in the Sky: The KH-9 Hexagon[J]. Optics and Photonics News, 2013, 24(10): 28-35 doi: 10.1364/OPN.24.10.000028
    [8]
    Surazakov A, Aizen V. Positional Accuracy Evaluation of Declassified Hexagon KH-9 Mapping Camera Imagery[J]. Photogrammetric Engineering & Remote Sensing, 2010, 76(5): 603-608 doi: 10.14358/PERS.76.5.603
    [9]
    Burnett M G. Hexagon (KH-9)–Mapping Camera Program and Evolution [M]. Chantilly: Center for the Study of National Reconnaissance(CSNR), 2012
    [10]
    Guillemette R. Declassified US Spy Satellites Reveal Rare Look at Secret Cold War Space Program[EB/OL]. http://www.space.com/12996-secret-spy-satellites-declassified-nro.html, 2011
    [11]
    Hanies G K. Critical to US Security: The Development of the GAMBIT and HEXAGON Satellite Reconnaissance System[M]. Chantilly: National Reconnaissance Office, 2012
    [12]
    Fowler M J. The Archaeological Potential of Declassified Hexagon KH-9 Panoramic Camera Satellite Photographs[J]. AARGnews, 2016, 53: 30-36 https://www.researchgate.net/publication/308684304_The_archaeological_potential_of_declassified_HEXAGON_KH-9_panoramic_camera_satellite_photographs
    [13]
    杨士超.子像素偏移追踪算法及其在实际地震同震形变场监测中的应用[D].合肥: 中国科学技术大学, 2015

    Yang Shichao. Sub-pixel Offset Tracking Algorithm and Its Application to Detection the Co-seismic Deformation of Real Earthquakes[D]. Hefei: University of Science and Technology of China, 2015
    [14]
    孙家柄.遥感原理与应用[M].武汉:武汉大学出版社, 2009

    Sun Jiabing. Principles and Applications of Remote Sensing[M]. Wuhan:Wuhan University Press, 2009
    [15]
    Leprince S, Barbot S, Ayoub F, et al. Automatic and Precise Orthorectification, Coregistration, and Subpixel Correlation of Satellite Images, Application to Ground Deformation Measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(6): 1 529-1 558 doi: 10.1109/TGRS.2006.888937
    [16]
    Copley A. Postseismic Afterslip 30 Years After the 1978 Tabas-e-Golshan (Iran) Earthquake: Observations and Implications for the Geological Evolution of Thrust Belts[J]. Geophysical Journal International, 2014, 197(2): 665-679 doi: 10.1093/gji/ggu023
    [17]
    李怀英.外电外刊对1978年9月16日伊朗塔巴斯地震的有关报道及评论(综合汇编)[J].国际地震动态, 1979, 5: 4-6 http://www.cnki.com.cn/Article/CJFDTotal-GJZT197905001.htm

    Li Huaiying. The Reports and Comments About the September 16th, 1978 Tabas, Iran Earthquake from Foreign News[J]. Recent Developments in World Seismology, 1979, 5: 4-6 http://www.cnki.com.cn/Article/CJFDTotal-GJZT197905001.htm
    [18]
    Walker R, Jackson J, Baker C. Surface Expression of Thrust Faulting in Eastern Iran: Source Parameters and Surface Deformation of the 1978 Tabas and 1968 Ferdows Earthquake Sequences[J]. Geophysical Journal International, 2003, 152(3): 749-765 doi: 10.1046/j.1365-246X.2003.01886.x
    [19]
    Ibrion M, Mokhtari M, Nadim F. Earthquake Disaster Risk Reduction in Iran: Lessons and "Lessons Learned" from Three Large Earthquake Disasters—Tabas 1978, Rudbar 1990, and Bam 2003[J]. International Journal of Disaster Risk Science, 2015, 6(4): 415-427 doi: 10.1007/s13753-015-0074-1
    [20]
    Berberian M. Earthquake Faulting and Bedding Thrust Associated with the Tabas-e-Golshan (Iran) Earthquake of September 16, 1978[J]. Bulletin of the Seismological Society of America, 1979, 69(6): 1 861-1 887
    [21]
    Nowroozi A A, Mohajer‐Ashjai A. Fault Movements and Tectonics of Eastern Iran: Boundaries of the Lut Plate[J]. Geophysical Journal of the Royal Astronomical Society, 1985, 83(1): 215-237 doi: 10.1111/j.1365-246X.1985.tb05164.x
    [22]
    Gulkan P, Gurpinar A, Celebi M, et al. Engineering Report on the Muradiye-Çaldiran, Turkey, Earthquake of 24 November 1976[M]. Washington D C: National Academy of Sciences, 1978
    [23]
    Selçuk A S, Erturaç M K, Nomade S. Geology of the Çaldıran Fault, Eastern Turkey: Age, Slip Rate and Implications on the Characteristic Slip Behaviour[J]. Tectonophysics, 2016, 680: 155-173 doi: 10.1016/j.tecto.2016.05.019
    [24]
    Reilinger R, McClusky S, Vernant P, et al. GPS Constraints on Continental Deformation in the Africa‐Arabia‐Eurasia Continental Collision Zone and Implications for the Dynamics of Plate Interactions[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B5): B05411
    [25]
    Toksöz M N, Arpat E, Şaroglu F. East Anatolian Earthquake of 24 November 1976[J]. Nature, 1977, 270(5 636): 423-425 https://www.nature.com/articles/270423b0
    [26]
    Toksöz M N, Nábělek J, Arpat E. Source Properties of the 1976 Earthquake in East Turkey: A Comparison of Field Data and Teleseismic Results[J]. Tectonophysics, 1978, 49(3-4): 199-205 doi: 10.1016/0040-1951(78)90178-6
    [27]
    Wells D L, Coppersmith K J. New Empirical Relationships Among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement[J]. Bulletin of the Seismological Society of America, 1994, 84(4): 974-1 002
  • Related Articles

    [1]YANG Renfei. Research on Multi-level Classification and Change Detection Using Remote Sensing Images for Urban Wetland[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2105-2105. DOI: 10.13203/j.whugis20230130
    [2]WANG Zhipan, SHEN Yan, WANG Liang, ZHANG Qingling, YOU Shucheng. High-Resolution Remote Sensing Image Building Change Detection Based on One-Class Classifier Framework[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1610-1618. DOI: 10.13203/j.whugis20180485
    [3]LUO Ling, MAO Dehua, ZHANG Bai, WANG Zongming, YANG Guang. Remote Sensing Estimation for Light Use Efficiency of Phragmites australis Based on Landsat OLI over Typical Wetlands[J]. Geomatics and Information Science of Wuhan University, 2020, 45(4): 524-533. DOI: 10.13203/j.whugis20180294
    [4]YANG Lamei, JIA Yonghong. A Method for Determining the Natural Boundary of Seasonal Saltwater Lake Wetland with Multi-source Data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(3): 419-425. DOI: 10.13203/j.whugis20180207
    [5]LI Peng, LI Dahui, LI Zhenhong, WANG Houjie. Wetland Classification Through Integration of GF-3 SAR and Sentinel-2B Multispectral Data over the Yellow River Delta[J]. Geomatics and Information Science of Wuhan University, 2019, 44(11): 1641-1649. DOI: 10.13203/j.whugis20180258
    [6]FENG Wenqing, ZHANG Yongjun. Object-oriented Change Detection for Remote Sensing Images Based on Fuzzy Comprehensive Evaluation[J]. Geomatics and Information Science of Wuhan University, 2016, 41(7): 875-881. DOI: 10.13203/j.whugis20140291
    [7]CHEN Jianqun, WU Xie, WANG Zhenxing, ZHU Jianjun. Establishment of Fundamental Geographic Information System and Associated Key Technologies for Poyang Lake Wetland[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 888-891.
    [8]GONG Hao, ZHANG Jingxiong, SHEN Shaohong. Object-Based Correspondence Analysis for Improved Accuracy in Remote Sensing Change Detection[J]. Geomatics and Information Science of Wuhan University, 2009, 34(5): 544-547.
    [9]ZHANG Jianqing, SHE Qiong, PAN Li. Change Detection of Residential Area by Remote Sensing Image Based on LBP/C Texture[J]. Geomatics and Information Science of Wuhan University, 2008, 33(1): 7-11.
    [10]ZHANG Xiaodong, LI Deren, GONG Jianya, QIN Qianqing. A Change Detection Method of Integrating Remote Sensing and GIS[J]. Geomatics and Information Science of Wuhan University, 2006, 31(3): 266-269.
  • Cited by

    Periodical cited type(3)

    1. 钟振,文麒麟,梁金福. 应用重力场模型二阶位系数及新近岁差率约束火星内核大小及密度组成. 物理学报. 2023(02): 386-392 .
    2. 文麒麟,钟振. 应用模拟退火算法估算月核大小及其密度组成. 物理学报. 2023(08): 347-353 .
    3. 魏二虎,任晓斌,刘经南,李连艳,聂桂根,李岩林. 利用VLBI观测量对月球天平动参数解算及着陆器定位和测速的改进. 武汉大学学报(信息科学版). 2022(04): 483-491 .

    Other cited types(1)

Catalog

    Article views (1391) PDF downloads (108) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return