YANG Yuanwei, WANG Mingwei, GAO Xianjun, LI Xi, ZHANG Jiahua. Automatic Shadow Compensation Based on Improved Wallis Model for High Resolution Remote Sensing Images[J]. Geomatics and Information Science of Wuhan University, 2021, 46(3): 318-325. DOI: 10.13203/j.whugis20190032
Citation: YANG Yuanwei, WANG Mingwei, GAO Xianjun, LI Xi, ZHANG Jiahua. Automatic Shadow Compensation Based on Improved Wallis Model for High Resolution Remote Sensing Images[J]. Geomatics and Information Science of Wuhan University, 2021, 46(3): 318-325. DOI: 10.13203/j.whugis20190032

Automatic Shadow Compensation Based on Improved Wallis Model for High Resolution Remote Sensing Images

Funds: 

Open Fund of Key Laboratory of National Geographic Census and Monitoring, Ministry of Natural Resources Open Fund 2020NGCM07

Open Fund of State Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University 18R04

National Natural Science Foundation of China 41701537

Open Research Fund of Key Laboratory of Earth Observation of Hainan Province 2020LDE001

More Information
  • Author Bio:

    YANG Yuanwei, PhD, lecturer, specializes in automatic objects recognition from high resolution images. E-mail: yyw_08@163.com

  • Corresponding author:

    GAO Xianjun, PhD, associate professor. E-mail: junxgao@yangtzeu.edu.cn

  • Received Date: December 11, 2019
  • Published Date: March 04, 2021
  •   Objectives  Shadows in high-resolution remote sensing images will cause objects information loss and image quality decline, which is not beneficial for relative applications. Current shadow compensation methods often take advantage of non-shadow information around the shadow area to increase the brightness, whereas there is an unsolved problem that the contrast cannot be enhanced well enough and self-adaptively. Wallis filter principle has been used in image dodging. However, when it is used in shadow compensation, contrast improvement is not as good as other methods, leading to poor compensation results. Therefore, an improved Wallis model compensation method is proposed in this paper to enhance the brightness and contrast better to restore the shaded information.
      Methods  First, by adding compensation strength and stretch parameters, an improved Wallis model is designed. The strength parameter is positive to the brightness and contrast, and the stretch parameter is sensitive to the contrast. Therefore, the improved Wallis model is more efficient to adjust brightness and contrast. Moreover, an automatic parameters calculation strategy is further explored to customize a suitable compensation model for each shadow area. On one hand, the brightness average and deviation of the adjacent non-shadow region are calculated and used as the compensation target values. On the other hand, based on searching the same kinds of points around shadow boundaries, a series of non-shadow and shadow feature points are matched. Assumed the feature value of the non-shadow point is the approximate value of its responding shadow point, they can be used to calculate strength and stretch parameters automatically. Lastly, the brightness of each pixel in different shadow regions will be compensated by customized models to cover the shaded information self-adaptively.
      Results  In this paper, three sets of comparative experiments are set up to analyze and compare the part compensation methods algorithm, original Wallis method in three images with ordinary object shadows and cloud shadows, respectively. The differences in brightness average and gradient average between the compensated value and the non-shadow target value are used to evaluate the compensation quality. The experimental results show that: (1) Original Wallis model is useful to enhance brightness to some extent, while it is insufficient to improve contrast. As a consequence, the visual compensated results are not acceptable as the other two methods. (2) Part compensation method can improve brightness and contrast effectively. However, it cannot adjust self-adaptively according to each shadow regions condition, leading to some over-compensated and some insufficient compensation results in the same image. (3) The proposed method results indicate the best compensation quality in different shadow regions because the improved Wallis model is more pointed to improve contrast and the automatically calculated parameters values are suitable to customize the compensation model for each shadow region.
      Conclusions  Aiming at the contrast improvement of the current algorithm of automatic shadow compensation, an automatic compensation method based on an improved Wallis model is proposed in this paper. The experimental results show that the newly designed model is more effective to enhance brightness and contrast, which is useful for finding suitable parameters values. Combining with the strategy of automatic parameters calculation, its customized model can adaptively compensate each shadow. However, it should be pointed out that there are still some limitations about the shadow border compensation and the internal difference in one shadow area, which need to be further studied.
  • [1]
    卢鑫, 赵红莉, 杨树文, 等. 一种陆地卫星影像厚云阴影检测方法[J]. 测绘科学, 2016, 41(5): 87-90 https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201605019.htm

    Lu Xin, Zhao Hongli, Yang Shuwen, et al. Dectection of Thick Clouds Shadow from Landsat TM Data[J]. Science of Surveying and Mapping, 2016, 41(5): 87-90 https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201605019.htm
    [2]
    Li Z, Shen H, Li H, et al. Multi-feature Combined Cloud and Cloud Shadow Detection in Gaofen-1 Wide Field of View Imagery[J]. Remote Sensing of Environment, 2017, 191: 342-358 doi: 10.1016/j.rse.2017.01.026
    [3]
    Tiwari S, Chauhan K, Kurmi Y. Shadow Detection and Compensation in Aerial Images Using MATLAB[J]. International Journal of Computer Applications, 2015, 119(20): 5-9 doi: 10.5120/21181-4230
    [4]
    王静. 基于线性校正的遥感图像阴影去除算法研究[D]. 成都: 西南交通大学, 2017

    Wang Jing. Research on Shadow Removal in Remote Sensing Images Based on Linear Correction[D]. Chengdu: Southwest Jiaotong University, 2017
    [5]
    Wang S, Wang Y. Shadow Detection and Compensation in High Resolution Satellite Image Based on Retinex[C]. IEEE Computer Society on Fifth International Conference on Image and Graphics, Xi'an, China, 2009
    [6]
    高贤君, 万幼川, 郑顺义, 等. 航空遥感影像阴影的自动检测与补偿[J]. 武汉大学学报·信息科学版, 2012, 37(11): 1 299-1 302 http://ch.whu.edu.cn/article/id/365

    Gao Xianjun, Wan Youchuan, Zheng Shunyi, et al. Automatic Shadow Detection and Compensation of Aerial Remote Sensing Images[J]. Geomatics and Information Science of Wuhan University, 2012, 37(11): 1 299-1 302 http://ch.whu.edu.cn/article/id/365
    [7]
    杨俊, 赵忠明, 杨健. 一种高分辨率遥感影像阴影去除方法[J]. 武汉大学学报·信息科学版, 2008, 33(1): 17-20 http://ch.whu.edu.cn/article/id/1488

    Yang Jun, Zhao Zhongming, Yang Jian. A Shadow Removal Method for High Resolution Remote Sensing Image[J]. Geomatics and Information Science of Wuhan University, 2008, 33(1): 17-20 http://ch.whu.edu.cn/article/id/1488
    [8]
    禹晶, 李大鹏, 廖庆敏. 基于颜色恒常性的低照度图像视见度增强[J]. 自动化学报, 2011, 37(8): 923-931 https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201108005.htm

    Yu Jing, Li Dapeng, Liao Qingmin. Color Constancy-Based Visibility Enhancement of Color Images in Low Light Conditions[J]. Acta Automatica Sinica, 2011, 37(8): 923-931 https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201108005.htm
    [9]
    张红颖, 李鸿, 孙毅刚. 基于混合高斯模型的阴影去除算法[J]. 计算机应用, 2013, 33(1): 31-34 https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201301012.htm

    Zhang Hongying, Li Hong, Sun Yigang. Shadow Removal Algorithm Based on Gaussian Mixture Model[J]. Journal of Computer Applications, 2013, 33(1): 31-34 https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201301012.htm
    [10]
    董胜光, 秦建新, 郭云开. 一种高分辨率遥感影像阴影补偿方法[J]. 测绘科学, 2018, 43(11): 118-124 https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201811019.htm

    Dong Shengguang, Qin Jianxin, Guo Yunkai. A Method of Shadow Compensation for High Resolution Remote Sensing Images[J]. Science of Surveying and Mapping, 2018, 43(11): 118-124 https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201811019.htm
    [11]
    林宗坚, 任超锋, 姚娜, 等. 一种航空影像阴影补偿方法[J]. 武汉大学学报·信息科学版, 2013, 38(4): 431-435 http://ch.whu.edu.cn/article/id/764

    Lin Zongjian, Ren Chaofeng, Yao Na, et al. A Shadow Compensation Method for Aerial Image[J]. Geomatics and Information Science of Wuhan University, 2013, 38(4): 431-435 http://ch.whu.edu.cn/article/id/764
    [12]
    Zhang H Y, Sun K M, Li W Z. Object-Oriented Shadow Detection and Removal from Urban High-Resolution Remote Sensing Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11): 6 972-6 982 doi: 10.1109/TGRS.2014.2306233
    [13]
    Wan C Y, King B A, Li Z. An Assessment of Shadow Enhanced Urban Remote Sensing Imagery of a Complex City: Hong Kong[C].The 22th ISPRS Congress, Melbourne, Austrilia, 2012
    [14]
    徐秋红, 叶勤. 一种基于颜色恒常性理论的城市高分辨率遥感影像阴影消除方法[J]. 遥感信息, 2010(4): 13-16 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXX201004005.htm

    Xu Qiuhong, Ye Qin. A Method of Shadow Elimination from City High Resolution Remote Sensing Images Based on Colour Constancy[J]. Remote Sensing Information, 2010(4): 13-16 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXX201004005.htm
    [15]
    曹彬才, 朱宝山, 李润生, 等. 用于单幅影像匀光的Wallis算法[J]. 测绘科学技术学报, 2012, 29(5): 373-377 https://www.cnki.com.cn/Article/CJFDTOTAL-JFJC201205015.htm

    Cao Bincai, Zhu Baoshan, Li Runsheng, et al. Wallis Algorithm for Single Image Dodging[J]. Journal of Geomatics Science and Technology, 2012, 29(5): 373-377 https://www.cnki.com.cn/Article/CJFDTOTAL-JFJC201205015.htm
    [16]
    王琼洁. 高分辨率正射影像阴影检测与各向异性散射补偿方法[D]. 武汉: 武汉大学, 2017

    Wang Qiongjie. High Resolution Orthoimage Shadow Detection and Anisotropic Scattering Compensation Method[D]. Wuhan: Wuhan University, 2017
    [17]
    Li H F, Zhang L P, Shen H F. An Adaptive Nonlocal Regularized Shadow Removal Method for Aerial Remote Sensing Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 106-120 doi: 10.1109/TGRS.2012.2236562
    [18]
    高贤君, 万幼川, 杨元维, 等. 高分辨率遥感影像阴影的自动检测与自动补偿[J]. 自动化学报, 2014, 40(8): 1 709-1 720 https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201408014.htm

    Gao Xianjun, Wan Youchuan, Yang Yuanwei, et al. Automatic Shadow Detection and Automatic Compensation in High Resolution Remote Sensing Images[J]. Acta Automatica Sinica, 2014, 40(8): 1 709-1 720 https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201408014.htm
    [19]
    高贤君, 万幼川, 何培培, 等. 单幅航空影像中云阴影的自动去除[J]. 天津大学学报(自然科学与工程技术版), 2014, 47(9): 771-777 https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201409004.htm

    Gao Xianjun, Wan Youchuan, He Peipei, et al. Automatic Cloud Shadow Removal in Single Aerial Image[J]. Journal of Tianjin University (Science and Technology), 2014, 47(9): 771-777 https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201409004.htm
  • Cited by

    Periodical cited type(7)

    1. 伍菲,尤江蛟. 面向三维交互场景的实时阴影渲染方法仿真. 计算机仿真. 2025(01): 224-228 .
    2. 高翔森,崔浩,李雪,王文宝,张骏,徐如志,张国涛. 联合全局优化和光照补偿的航空影像色彩一致性处理算法. 北京测绘. 2024(10): 1387-1393 .
    3. 张卫龙. 基于各向异性的遥感影像匀光匀色算法. 科学技术与工程. 2023(02): 656-664 .
    4. 梁海奎. 基于Gabor变换与克隆选择的高保真遥感影像阴影角度精确校正方法. 粉煤灰综合利用. 2023(03): 94-99 .
    5. 林翠翠. 基于HIS色彩空间的可见光影像色彩平衡方法. 北京测绘. 2023(08): 1085-1089 .
    6. 杨金辉,高贤君,杨元维,丰远远. 自适应Gamma变换的遥感影像云阴影补偿方法. 激光与光电子学进展. 2022(10): 430-438 .
    7. 肖斌,徐勇,何宏昌,张洁,苗林林,刘兵. 顾及阴影检测的BP神经网络高光谱影像分类. 无线电工程. 2021(12): 1442-1448 .

    Other cited types(3)

Catalog

    Article views (1231) PDF downloads (106) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return