XU Xiaohua, ZHU Zhouzong, LUO Jia. Quality Analysis of the Neutral Atmospheric Products from FY-3C Radio Occultation Based on IGRA2 Radiosonde Data and COSMIC Radio Occulation Products[J]. Geomatics and Information Science of Wuhan University, 2020, 45(3): 384-393. DOI: 10.13203/j.whugis20180490
Citation: XU Xiaohua, ZHU Zhouzong, LUO Jia. Quality Analysis of the Neutral Atmospheric Products from FY-3C Radio Occultation Based on IGRA2 Radiosonde Data and COSMIC Radio Occulation Products[J]. Geomatics and Information Science of Wuhan University, 2020, 45(3): 384-393. DOI: 10.13203/j.whugis20180490

Quality Analysis of the Neutral Atmospheric Products from FY-3C Radio Occultation Based on IGRA2 Radiosonde Data and COSMIC Radio Occulation Products

Funds: 

The National Natural Science Foundation of China 41774033

The National Natural Science Foundation of China 41774032

the National Key Basic Research and Development Program of China 2013CB733302

the National Key Research and Development Program of China 2018YFC1503502

More Information
  • Author Bio:

    XU Xiaohua, professor, specializes in GNSS meteorology. E-mail:xhxu@sgg.whu.edu.cn

  • Corresponding author:

    LUO Jia, associate professor. E-mail:jluo@sgg.whu.edu.cn

  • Received Date: December 18, 2018
  • Published Date: March 04, 2020
  • Based on the IGRA2 radiosonde data and the COSMIC(Constellation Observing System for Meteorology Ionosphere and Climate) radio occulation(RO) products, the quality analysis of the neutral atmospheric products from FY-3C RO observations, including the refractivity, the temperature and the specific humidity profiles, during 2015 to 2017 is carried out. The results show that below 25 km, there are no systematic negative deviations in FY-3C RO temperature profiles and the standard deviation of the relative deviation is smaller than 5.0%. Systematic negative deviations in temperature profiles exist, and the standard deviation is more than 1.5 K. The quality of specific humidity profiles is poorer when the height approaches the ground more closely, and the standard deviation is smaller than 1.2 g/kg. Although the FY-3C RO data is generally of high quality and the quality is higher and higher from 2015 to 2017, it needs to be further improved near the ground and above 25 km. The further analysis based on the products during 2017 shows that the qualities of the FY-3C RO refractivity profiles and temperature profiles are the worst in winter, while the qualities of the FY-3C RO specific humidity profiles are the worst in summer. The qualities of the FY-3C RO refractivity profiles are the worst in the low latitudes, while the altitudinal dependencies of the qualities of FY-3C RO temperature profiles are not the same at different altitude ranges, and the FY-3C specific humidity profiles are significantly worse in the low latitudes than in the middle latitudes. In addition, day and night differences and land and sea differences also exist in the qualities of FY-3C RO products.
  • [1]
    Fishbach F F. A Satellite Method for Temperature and Pressure Below 24 km[J]. Bulletin of American Meteorological Society, 1965, 46(11):528-532
    [2]
    Kuo Y H, Wee T K, Sokolovskiy S, et al. Inversion and Error Estimation of GPS Radio Occultation Data[J]. Journal of the Meteorological Society of Japan, 2004, 82(1):507-531 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=06a43cf0665f4664a3f313c0941fd53b
    [3]
    Wang B R, Liu X Y, Wang J K. Assessment of COSMIC Radio Occultation Retrieval Product Using Global Radiosonde Data[J]. Atmospheric Measurement Techniques Discussions, 2012, 5(6):1073-1083 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_dca6bb7cf083f0809512ca88c3a92fa1
    [4]
    徐晓华, 刘树纶, 罗佳.利用COSMIC掩星折射指数分析全球大气边界层顶结构变化[J].武汉大学学报·信息科学版, 2018, 43(1):94-100 http://ch.whu.edu.cn/CN/abstract/abstract5952.shtml

    Xu Xiaohua, Liu Shulun, Luo Jia. Analysis on the Variation of Global ABL Top Structure Using COSMIC Radio Occulation Refractivity[J]. Geomatics and Information Science of Wuhan Univerisity, 2018, 43(1):94-100 http://ch.whu.edu.cn/CN/abstract/abstract5952.shtml
    [5]
    廖蜜, 张鹏, 杨光林, 等.风云三号气象卫星掩星大气产品精度的初步检验[J].气象学报, 2015, 73(6):1131-1140 http://d.old.wanfangdata.com.cn/Periodical/qxxb201506011

    Liao Mi, Zhang Peng, Yang Guanglin, et al. Preliminary Validation of the Accuracy of Atmospheric Products from FY-3C[J]. Journal of Meteorological Research, 2015, 73(6):1131-1140 http://d.old.wanfangdata.com.cn/Periodical/qxxb201506011
    [6]
    Liao Mi, Zhang Peng, Yang Guanglin, et al. Preliminary Validation of the Refractivity from the New Radio Occultation Sounder GNOS/FY-3C[J]. Atmospheric Measurement Techniques, 2016, 9(2):781-792 doi: 10.5194/amt-9-781-2016
    [7]
    马旭林, 姜胜, 于月明, 等.COSMIC掩星反演大气温湿资料的质量特征分析[J].大气科学学报, 2017, 40(6):841-849 http://d.old.wanfangdata.com.cn/Periodical/njqxxyxb201706013

    Ma Xulin, Jiang Sheng, Yu Yueming, et al. Analyzing the Quality of Data for Temperature and Humidity Using COSMIC Radio Occultation Observations[J]. Transactions of Atmospheric Sciences, 2017, 40(6):841-849 http://d.old.wanfangdata.com.cn/Periodical/njqxxyxb201706013
    [8]
    Du M. Evaluation for Retrieving Precision and Some Merits of COSMIC Data[J]. Journal of Applied Meteorological Science, 2009, 20(5):586-593 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yyqxxb200905010
    [9]
    Sokolovskiy S. Effect of Superrefraction on Inversions of Radio Occultation Signals in the Lower Troposphere[J]. Radio Science, 2003, 38(3), DOI: 10.1029/2002RS002728
    [10]
    Ao C O, Mannucci A J, Kursinski E R. Improving GPS Radio Occultation Stratospheric Refractivity Retrievals for Climate Benchmarking[J]. Geophysical Research Letters, 2012, 39(12):229-240 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2012GL051720
    [11]
    Staten P W, Thomas R. Apparent Precision of GPS Radio Occultation Temperatures[J]. Geophysical Research Letters, 2009, 36(24):392-395 doi: 10.1029-2009GL041046/
    [12]
    柳聪亮, Zhang Kefei, 谭志祥, 等.电离层干扰对GPS掩星弯曲角和温度精度的影响[J].武汉大学学报·信息科学版, 2014, 39(11):1334-1339 http://ch.whu.edu.cn/CN/abstract/abstract3120.shtml

    Liu Congliang, Zhang Kefei, Tan Zhixiang, et al. The Effects of Ionospheric Disturbances on the Accuracy of GPS Radio Occultation Bending Angle and Temperature[J].Geomatics and Information Science of Wuhan University, 2014, 39(11):1334-1339 http://ch.whu.edu.cn/CN/abstract/abstract3120.shtml
    [13]
    毕研盟, 廖蜜, 张鹏, 等.应用一维变分法反演GPS掩星大气温湿廓线[J].物理学报, 2013(15):568-574 http://d.old.wanfangdata.com.cn/Periodical/wlxb201315080

    Bi Yanmeng, Liao Mi, Zhang Peng, et al. 1DVAR Retrieval Method for GPS Radio Occultation Measurements of Atmospheric Temperature and Humidity Profiles[J]. Acta Physica Sinica, 2013(15):568-574 http://d.old.wanfangdata.com.cn/Periodical/wlxb201315080
  • Related Articles

    [1]ZHOU Fangbin, ZOU Lianhua, LIU Xuejun, MENG Fanyi. Micro Landform Classification Method of Grid DEM Based on Convolutional Neural Network[J]. Geomatics and Information Science of Wuhan University, 2021, 46(8): 1186-1193. DOI: 10.13203/j.whugis20190311
    [2]ZOU Kun, WO Yan, XU Xiang. A Feature Significance-Based Method to Extract Terrain Feature Lines[J]. Geomatics and Information Science of Wuhan University, 2018, 43(3): 342-348. DOI: 10.13203/j.whugis20150373
    [3]CAO Zhenzhou, LI Manchun, CHENG Liang, CHEN Zhenjie. Progressive Transmission of Vector Curve Data over InternetCAO ZhenzhouLI Manchun[J]. Geomatics and Information Science of Wuhan University, 2013, 38(4): 475-479.
    [4]ZHENG Shunyi, HU Hualiang, HUANG Rongyong, JI Zheng. Realtime Ranging of Power Transmission Line[J]. Geomatics and Information Science of Wuhan University, 2011, 36(6): 704-707.
    [5]AI Bo, AI Tinghua, TANG Xinming. Progressive Transmission of River Network[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 51-54.
    [6]LIU Yan, LIU Jingnan, LI Tao, XIA Ye. Monitoring Damage of State Grid Transmission Tower in Bad Weather by High-Resolution SAR Satellites[J]. Geomatics and Information Science of Wuhan University, 2009, 34(11): 1354-1358.
    [7]YIN Hui, ZHANG Xiaohong, ZHANG Xiaowu, LIU Xingfa. Interference Analysis to Aerial Flight Caused by UHV Lines Using Airborne GPS[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7): 774-777.
    [8]WANG Cheng, HU Peng, LIU Xiaohang, LI Yunxiang. Automated Classification of Martian Landforms Based on Digital Terrain Analysis(DTA) Technology[J]. Geomatics and Information Science of Wuhan University, 2009, 34(4): 483-487.
    [9]ZHENG Jingjing, FANG Jinyun, HAN Chengde. Progressive Transmission Method of DEM Data Based on JPEG2000 Lossless-Compression[J]. Geomatics and Information Science of Wuhan University, 2009, 34(4): 395-399.
    [10]WANG Wei, DU Daosheng, XIONG Hanjiang, ZHONG Jing. 3D Modeling and Data Organization of Power Transmission[J]. Geomatics and Information Science of Wuhan University, 2005, 30(11): 986-990.
  • Cited by

    Periodical cited type(7)

    1. 邱龙. 基于无人机测绘图像的大面积地形变化特征提取方法. 北京测绘. 2024(06): 930-935 .
    2. 邓颖,蒋兴良,张志劲,曾蕴睿,马龙飞. 基于DEM分析的输电线路覆冰微地形分类识别及验证方法. 高电压技术. 2024(11): 4971-4980 .
    3. 巩鑫龙,田瑞,王孟. 220?kV正兰甲线所在微地形区域风场特性研究. 电力安全技术. 2024(11): 47-51 .
    4. 董慎学,石峰,刘刚,王有威,徐兆国. 垭口地形对输电线路风场分布特性影响分析. 重庆理工大学学报(自然科学). 2023(06): 340-346 .
    5. 吴建蓉,文屹,张啟黎,何锦强,张厚荣,龚博. 基于GIS的易覆冰微地形分类提取算法与三维应用. 高电压技术. 2023(S1): 1-5 .
    6. 周访滨,钟绍平,朱衍哲,杨自强,马国伟. 顾及爆燃地形特征的峡谷分级提取方法. 测绘科学. 2023(09): 89-98 .
    7. 胡京,邓颖,蒋兴良,曾蕴睿. 输电线路覆冰垭口微地形的特征提取与识别方法. 中国电力. 2022(08): 135-142 .

    Other cited types(0)

Catalog

    Article views (1832) PDF downloads (131) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return