LI Xin, YANG Yuhui, YANG Bo, YIN FENG. A Multi-source Remote Sensing Image Matching Method Using Directional Phase Feature[J]. Geomatics and Information Science of Wuhan University, 2020, 45(4): 488-494. DOI: 10.13203/j.whugis20180445
Citation: LI Xin, YANG Yuhui, YANG Bo, YIN FENG. A Multi-source Remote Sensing Image Matching Method Using Directional Phase Feature[J]. Geomatics and Information Science of Wuhan University, 2020, 45(4): 488-494. DOI: 10.13203/j.whugis20180445

A Multi-source Remote Sensing Image Matching Method Using Directional Phase Feature

More Information
  • Author Bio:

    LI Xin, PhD, professor. He is concentrated on the research and teaching in photogrammetry and remote sensing. xli2126@whu.edu.cn

  • Corresponding author:

    YANG Yuhui, postgraduate. yuhuiyang@whu.edu.cn

  • Received Date: April 12, 2019
  • Published Date: April 04, 2020
  • A multi-source remote sensing image matching method using directional phase feature is proposed to solve the problem of matching multi-source remote sensing images with nonlinear radiometric differences. Firstly, feature points of reference image are extracted uniformly. And then phase congruency energy images in multiple directions are calculated using Log-Gabor filters. Dense character descriptions of feature points of the reference image are built. Finally, correspondences are obtained by sliding matching window and Taylor series expansion is used to fit to the sub pixel accuracy. Experiments on three groups of real heterogeneous remote sensing images show that the proposed method can achieve stable and reliable matching results on optical, infrared, multi-spectral and SAR (synthetic aperture radar)images.
  • [1]
    张剑清, 潘励, 王树根.摄影测量学[M].武汉:武汉大学出版社, 2009

    Zhang Jianqing, Pan Li, Wang Shugen. Photogrammetry[M]. Wuhan:Wuhan University Press, 2009
    [2]
    Lowe D G. Distinctive Image Features from ScaleInvariant Keypoints[J]. International Journal of Computer Vision, 2004, 60(2):91-110 doi: 10.1023/b:visi.0000029664.99615.94
    [3]
    Kelman A, Sofka M, Stewart C V. Keypoint Descriptors for Matching Across Multiple Image Modalities and Non-linear Intensity Variations[C]. IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, Minnesota, USA, 2007 10.1109/CVPR.2007.383426
    [4]
    张谦, 贾永红, 胡忠文.多源遥感影像配准中的SIFT特征匹配改进[J].武汉大学学报·信息科学版, 2013, 38(4):455-459 http://ch.whu.edu.cn/CN/Y2013/V38/I4/455

    Zhang Qian, Jia Yonghong, Hu Zhongwen. An Improved SIFT Algorithm for Multi-source Remote Sensing Image Registration[J]. Geomatics and Information Science of Wuhan University, 2013, 38(4):455-459 http://ch.whu.edu.cn/CN/Y2013/V38/I4/455
    [5]
    叶沅鑫, 单杰, 熊金鑫, 等.一种结合SIFT和边缘信息的多源遥感影像匹配方法[J].武汉大学学报·信息科学版, 2013, 38(13):1148-1151 http://ch.whu.edu.cn/CN/Y2013/V38/I13/1148

    Ye Yuanxin, Shan Jie, Xiong Jinxin, et al. A Matching Method Combining SIFT and Edge Information for Multi-source Remote Sensing Images[J]. Geomatics and Information Science of Wuhan University, 2013, 38(13):1148-1151 http://ch.whu.edu.cn/CN/Y2013/V38/I13/1148
    [6]
    Dellinger F, Delon J, Gousseau Y, et al. SARSIFT:A SIFT-Like Algorithm for SAR Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(1):453-466 doi: 10.1109/TGRS.2014.2323552
    [7]
    Xiang Y, Feng W, You H. OS-SIFT:A Robust SIFT-Like Algorithm for High-resolution Optical-toSAR Image Registration in Suburban Areas[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(6):1-13 doi: 10.1109/TGRS.2018.2835068
    [8]
    叶沅鑫, 慎利, 陈敏, 等.局部相位特征描述的多源遥感影像自动匹配[J].武汉大学学报·信息科学版, 2017, 42(9):1278-1284 http://ch.whu.edu.cn/CN/Y2017/V42/I9/1278

    Ye Yuanxin, Shen Li, Chen Min, et al. An Automatic Matching Method Based on Local Phase Feature Descriptor for Multi-source Remote Sensing Images[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9):1278-1284 http://ch.whu.edu.cn/CN/Y2017/V42/I9/1278
    [9]
    朱雪龙.应用信息论基础[M].北京:清华大学出版社, 2001

    Zhu Xuelong. Fundamentals of Applied Information Theory[M]. Beijing:Tsinghua University Press, 2001
    [10]
    Rueckert D. Non-rigid Registration Using Higher-order Mutual Information[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2000, 3979:438-447 http://d.old.wanfangdata.com.cn/Periodical/zdhxb201609010
    [11]
    Cahill N D. Normalized Measures of Mutual Information with General Definitions of Entropy for Multimodal Image Registration[C]. International Conference on Biomedical Image Registration, Lübeck, Germany, 2010 10.1007/978-3-642-14366-3_23
    [12]
    Suri S, Reinartz P. Mutual-Information-Based Registration of TerraSAR-X and Ikonos Imagery in Urban Areas[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(2):939-949 doi: 10.1109/TGRS.2009.2034842
    [13]
    Kovesi P. Image Features from Phase Congruency[J]. Journal of Computer Vision Research, 1999, 1(1):115-116 http://d.old.wanfangdata.com.cn/Periodical/chxb201006010
    [14]
    Ye Yuanxin, Shen Li. HOPC:A Novel Similarity Metric Based on Geometric Structural Properties for Multi-modal Remote Sensing Image Matching[J]. ISPRS Annals of Photogrammetry Remote Sensing and Spatial Information Sciences, 2016, 3(1):9-16 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0225190141/
    [15]
    Fan J, Yan W, Ming L, et al. SAR and Optical Image Registration Using Nonlinear Diffusion and Phase Congruency Structural Descriptor[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(9):5368-5379 doi: 10.1109/TGRS.2018.2815523
    [16]
    Harris C. A Combined Corner and Edge Detector[C]. The 4th Alvey Vision Conference, Manchester, UK, 1988 10.5244/C.2.23
    [17]
    Oppenheim A V, Lim J S. The Importance of Phase in Signals[J]. Proc IEEE, 1981, 69(5):529-541 doi: 10.1109/PROC.1981.12022
    [18]
    Field D J. Relations Between the Statistics of Natural Images and the Response Properties of Cortical Cells[J]. Journal of the Optical Society of America A-Optics Image Science and Vision, 1987, 4(12):2379-2394 doi: 10.1364/JOSAA.4.002379
    [19]
    Fan B, Huo C, Pan C, et al. Registration of Optical and SAR Satellite Images by Exploring the Spatial Relationship of the Improved SIFT[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 10(4):657-666 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d6744065466663d82cd9fc25af6273a2
  • Related Articles

    [1]JI Kunpu, SHEN Yunzhong, CHEN Qiujie. An Adaptive Regularized Filtering Approach for Processing GRACE Time-Variable Gravity Field Models[J]. Geomatics and Information Science of Wuhan University, 2024, 49(11): 2101-2112. DOI: 10.13203/j.whugis20240316
    [2]LIU Meng, WANG Zheng-tao. Downward Continuation Iterative Regularization Solution Based on Quasi Optimal Regularization Factor Set[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230127
    [3]WU Fengfeng, HUANG Haijun, REN Qingyang, FAN Wenyou, CHEN Jie, PAN Xiong. Analysis of Downward Continuation Model of Airborne Gravity Based on Comprehensive Semi-parametric Kernel Estimation and Regularization Method[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1563-1569. DOI: 10.13203/j.whugis20180491
    [4]XU Xinqiang, ZHAO Jun. A Multi-Parameter Regularization Method in Downward Continuation for Airborne Gravity Data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(7): 956-963, 973. DOI: 10.13203/j.whugis20180335
    [5]JI Kunpu, SHEN Yunzhong. Unbiased Estimation of Unit Weight Variance by TSVD Regularization[J]. Geomatics and Information Science of Wuhan University, 2020, 45(4): 626-632. DOI: 10.13203/j.whugis20180270
    [6]SUN Wen, WU Xiaoping, WANG Qingbin, LIU Xiaogang, ZHU Zhida. Normalized Collocation Based on Variance Component Estimate and Its Application in Multi-source Gravity Data Fusion[J]. Geomatics and Information Science of Wuhan University, 2016, 41(8): 1087-1092. DOI: 10.13203/j.whugis20140159
    [7]ZENG Xiaoniu, LI Xihai, LIU Zhigang, YANG Xiaojun, LIU Daizhi. Regularization Method for Reduction to the Pole and Components Transformation of Magnetic Anomaly at Low Latitudes[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 388-394. DOI: 10.13203/j.whugis20140342
    [8]GU Yongwei, GUI Qingming, HAN Songhui, WANG Jinhui. Regularization by Grouping Correction in Downward Continuation of Airborne Gravity[J]. Geomatics and Information Science of Wuhan University, 2013, 38(6): 720-724.
    [9]GU Yongwei, GUI Qingming, BIAN Shaofeng, GUO Jianfeng. Comparison Between Tikhonov Regularization and Truncated SVD in Geophysics[J]. Geomatics and Information Science of Wuhan University, 2005, 30(3): 238-241.
    [10]XU Tianhe, YANG Yuanxi. Robust Tikhonov Regularization Method and Its Applications[J]. Geomatics and Information Science of Wuhan University, 2003, 28(6): 719-722.
  • Cited by

    Periodical cited type(5)

    1. 穆庆禄,王长青,闫易浩,钟敏,冯伟,梁磊,朱紫彤. 不同指向模式下星载冷原子梯度仪对重力场解算精度的影响. 地球物理学报. 2024(07): 2528-2545 .
    2. 刘滔,钟波,李贤炮,谭江涛. GOCE卫星重力梯度数据反演重力场的滤波器设计与比较分析. 武汉大学学报(信息科学版). 2023(05): 694-701 .
    3. 朱广彬,常晓涛,瞿庆亮,周苗. 利用卫星引力梯度确定地球重力场的张量不变方法研究. 武汉大学学报(信息科学版). 2022(03): 334-340 .
    4. 罗志才,钟波,周浩,吴云龙. 利用卫星重力测量确定地球重力场模型的进展. 武汉大学学报(信息科学版). 2022(10): 1713-1727 .
    5. 陈鑑华,张兴福,陈秋杰,梁建青,沈云中. 融合GOCE和GRACE卫星数据的无约束重力场模型Tongji-GOGR2019S. 地球物理学报. 2020(09): 3251-3262 .

    Other cited types(1)

Catalog

    Article views (2491) PDF downloads (220) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return