LI Xi, XUE Xiangyu. Estimation Method of Nighttime Light Images' Electric Power Consumption Based on the Boston Matrix[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1994-2002. DOI: 10.13203/j.whugis20180334
Citation: LI Xi, XUE Xiangyu. Estimation Method of Nighttime Light Images' Electric Power Consumption Based on the Boston Matrix[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1994-2002. DOI: 10.13203/j.whugis20180334

Estimation Method of Nighttime Light Images' Electric Power Consumption Based on the Boston Matrix

Funds: 

The National Natural Science Foundation of China 41771386

Headquarter Technology Project of State Grid Corporation of China JYYKJXM(2017)011

More Information
  • Author Bio:

    LI Xi, PhD, associate professor, specializes in the remote sensing of nighttime light. E-mail:lixi@whu.edu.cn

  • Corresponding author:

    XUE Xiangyu, postgraduate. E-mail:xiangyuxue@whu.edu.cn

  • Received Date: September 03, 2018
  • Published Date: December 04, 2018
  • Aiming at the problem of inadequate accuracy of social and economic parameter estimation in local area by nighttime light images, a new light index method based on the Boston matrix is proposed. Based on the traditional light index method, this paper introduces the Boston matrix and establishes the linear model after classifying all the study areas. We choose the electric power consumption of social and economic parameters as the research object, with 2015 VIIRS product as the main data source, select a total of 182 prefecture-level cities in mainland China from the 17 provinces, autonomous regions and municipalities as research areas. By using the Boston matrix, all cities are divided into four categories:star city, cash cow city, problem city and thin-dog city, respectively.The results show that the average relative error of light index method based on the Boston matrix is 34.04%, which is less than 41.69% of the traditional light index method. In addition, the average relative error of the light index method based on the Boston matrix is smaller than that of the traditional light index method, except for the star cities.According to the relative error, the estimation results are divided into three types:high precision, medium precision and low precision. The proportion of the high and medium precision estimation results based on the Boston matrix is higher than that of the traditional light index method, while the proportion of the low-precision results is lower than that of the traditional light index method.It can be seen that the light index method based on the Boston matrix me-thod is superior to the traditional light index method in the estimation of electric power consumption.
  • [1]
    袁家海, 丁伟, 胡兆光.电力消费与中国经济发展的协整与波动分析[J].电网技术, 2006, 30(9):10-14 doi: 10.3321/j.issn:1000-3673.2006.09.002

    Yuan Jiahai, Ding Wei, Hu Zhaoguang. Analysis on Cointegration and Co-movement of Electricity Consumption and Economic Growth in China[J].Power System Technology, 2006, 30(9):10-14 doi: 10.3321/j.issn:1000-3673.2006.09.002
    [2]
    Tso G K F, Yau K K W. Predicting Electricity Energy Consumption:A Comparison of Regression Analysis, Decision Tree and Neural Networks[J]. Energy, 2007, 32(9):1761-1768 doi: 10.1016/j.energy.2006.11.010
    [3]
    李德仁, 李熙.论夜光遥感数据挖掘[J].测绘学报, 2015, 44(6):591-601 http://d.old.wanfangdata.com.cn/Periodical/chxb201506001

    Li Deren, Li Xi. An Overview on Data Mining of Nighttime Light Remote Sensing[J].Acta Geodaetica et Cartographica Sinica, 2015, 44(6):591-601 http://d.old.wanfangdata.com.cn/Periodical/chxb201506001
    [4]
    李德仁, 李熙.夜光遥感技术在评估经济社会发展中的应用?——兼论其对"一带一路"建设质量的保障[J].宏观质量研究, 2015, 3(4):1-8 doi: 10.3969/j.issn.2095-607X.2015.04.001

    Li Deren, Li Xi. Applications of Night-time Light Remote Sensing in Evaluating of Socioeconomic Development[J].Journal of Macro-Quality Research, 2015, 3(4):1-8 doi: 10.3969/j.issn.2095-607X.2015.04.001
    [5]
    Welch R. Monitoring Urban Population and Energy Utilization Patterns from Satellite Data[J]. Remote Sensing of Environment, 1980, 9(1):1-9 doi: 10.1016/0034-4257(80)90043-7
    [6]
    Elvidge C D, Baugh K E, Kihn E A, et al.Mapping City Lights with Nighttime Data from the DMSP Operational Linescan System[J].Photogrammetric Engineering and Remote Sensing, 1997, 63(6):727-734 http://xueshurefer.baidu.com/nopagerefer?id=f0a43aa9c770fb752ccfbe95e6ae12a8
    [7]
    Lu D, Tian H, Zhou G, et al. Regional Mapping of Human Settlements in Southeastern China with Multisensor Remotely Sensed Data[J]. Remote Sensing of Environment, 2008, 112(9):3668-3679 doi: 10.1016/j.rse.2008.05.009
    [8]
    He C, Ma Q, Liu Z, et al. Modeling the Spatiotemporal Dynamics of Electric Power Consumption in Mainland China Using Saturation-Corrected DMSP/OLS Nighttime Stable Light Data[J]. International Journal of Digital Earth, 2014, 7(12):993-1014 doi: 10.1080/17538947.2013.822026
    [9]
    Shi Kaifang, Yu Bailang, Huang Chang, et al. Exploring Spatiotemporal Patterns of Electric Power Consumption in Countries Along the Belt and Road[J]. Energy, 2018, 150:847-859 doi: 10.1016/j.energy.2018.03.020
    [10]
    Li X, Xu H, Chen X, et al. Potential of NPP-VIIRS Nighttime Light Imagery for Modeling the Regional Economy of China[J].Remote Sensing, 2013, 5(6):3057-3081 doi: 10.3390/rs5063057
    [11]
    李峰, 孙广通, 王秋玲, 等. NPP-VIIRS夜间灯光数据的县级电力消费空间化研究[J].测绘与空间地理信息, 2018, 41(4):8-11, 15 doi: 10.3969/j.issn.1672-5867.2018.04.003

    Li Feng, Sun Guangtong, Wang Qiuling, et al.Spatialization Research of Electricity Consumptions at County Level Using NPP-VIIRS Nighttime Lights[J].Geomatics & Spatial Information Technology, 2018, 41(4):8-11, 15 doi: 10.3969/j.issn.1672-5867.2018.04.003
    [12]
    He C, Li T, Yang Y, et al. Spatiotemporal Dyna-mics of Electric Power Consumption in Chinese Mainland from 1995 to 2008 Modeled Using DMSP/OLS Stable Nighttime Lights Data[J]. Journal of Geographical Sciences, 2012, 22(1):125-136 doi: 10.1007/s11442-012-0916-3
    [13]
    Shi K, Yu B, Huang Y, et al. Evaluating the Abi-lity of NPP-VIIRS Nighttime Light Data to Estimate the Gross Domestic Product and the Electric Power Consumption of China at Multiple Scales:A Comparison with DMSP-OLS Data[J].Remote Sensing, 2014, 6(2):1705-1724 doi: 10.3390/rs6021705
    [14]
    施建刚, 裘丽岚.城市群内城市分级方法比较研究——以成都平原城市群为例[J].城市问题, 2009(12):19-22 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=NSSD201404140000058737

    Shi Jiangang, Qiu Lilan.A Comparative Study of Urban Classification Methods in Urban Agglomerations-A Case Study of Urban Agglomerations in Chengdu Plain[J].The Urban Problems, 2009(12):19-22 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=NSSD201404140000058737
    [15]
    Cao C, Xiong J, Blonski S, et al. Suomi NPP VIIRS Sensor Data Record Verification, Validation, and Long-term Performance Monitoring[J]. Journal of Geophysical Research:Atmospheres, 2013, 118(20):11664-11678 doi: 10.1002/2013JD020418
    [16]
    Jing X, Shao X, Cao C, et al. Comparison Between the Suomi-NPP Day-Night Band and DMSP-OLS for Correlating Socio-Economic Variables at the Provincial Level in China[J].Remote Sensing, 2015, 8(1):17 doi: 10.3390/rs8010017
    [17]
    王双.波士顿矩阵的运用[J].企业改革与管理, 2001(8):30-31 http://d.old.wanfangdata.com.cn/Periodical/wxjy-z201406042

    Wang Shuang. The Applications of the Boston Matrix[J].Enterprise Reform and Management, 2001(8):30-31 http://d.old.wanfangdata.com.cn/Periodical/wxjy-z201406042
    [18]
    赵晋.波士顿矩阵分析在实际案例中的运用[J].中国高新技术企业, 2008(8):25 doi: 10.3969/j.issn.1009-2374.2008.08.023

    Zhao Jin. Applications of Boston Matrix Analysis in Practical Cases[J].Chinese High-tech Enterprises, 2008(8):25 doi: 10.3969/j.issn.1009-2374.2008.08.023
    [19]
    裘丽岚.基于波士顿矩阵及应用法则分析川渝城市群的战略发展[J].河北科技大学学报, 2010, 31(1):74-80 http://d.old.wanfangdata.com.cn/Periodical/hbkjdx201001018

    Qiu Lilan.Analysis of Strategic Development of Chuan-Yu Urban Agglomeration Based on Applied Rules of Boston Matrix[J].Journal of Hebei University of Science and Technology, 2010, 31(1):74-80 http://d.old.wanfangdata.com.cn/Periodical/hbkjdx201001018
    [20]
    李海斌, 王琼海.波士顿矩阵分析法的局限、修正及应用[J].科技创新导报, 2009(33):199 doi: 10.3969/j.issn.1674-098X.2009.33.159

    Li Haibin, Wang Qionghai. Limitations, Modifications and Applications of Boston Matrix Analysis[J].Science and Technology Innovation Herald, 2009(33):199 doi: 10.3969/j.issn.1674-098X.2009.33.159
  • Related Articles

    [1]MENG Yingying, ZHOU Size, NIE Yan, ZENG Huaiwen, YU Jing. Spatial Delimitation of Urban-Rural Fringe Based on POI and Nighttime Light Data: A Case Study of Wuhan City[J]. Geomatics and Information Science of Wuhan University, 2025, 50(3): 449-461. DOI: 10.13203/j.whugis20220597
    [2]ZHONG Qianqian, XIAO Rui, CAO Hanrui, LI Xi, WU Ji. Evaluation of Qimingxing⁃1 Nighttime Light Image[J]. Geomatics and Information Science of Wuhan University, 2023, 48(8): 1273-1285. DOI: 10.13203/j.whugis20230035
    [3]LI Fei, YAN Qingwu, ZOU Yajing, LIU Baoli. Extraction Accuracy of Urban Built-up Area Based on Nighttime Light Data and POI: A Case Study of Luojia 1-01 and NPP/VIIRS Nighttime Light Images[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6): 825-835. DOI: 10.13203/j.whugis20190266
    [4]XU Huimin, HU Shougeng. Chinese City Size Evolution Under Perspective of Nighttime Light Remote Sensing[J]. Geomatics and Information Science of Wuhan University, 2021, 46(1): 40-49. DOI: 10.13203/j.whugis20190330
    [5]LIU Quanyi, ZHAN Qingming, LI Jiansong, YANG Chen, LIU Wen. Extracting Built-up Areas Using Luojia-1A Nighttime Light Imageries in Wuhan, China[J]. Geomatics and Information Science of Wuhan University, 2021, 46(1): 30-39. DOI: 10.13203/j.whugis20190376
    [6]ZHANG Jixian, DUAN Minyan, LIN Xiangguo, ZANG Yi. Comparison and Analysis of Models for 3D Power Line Reconstruction Using LiDAR Point Cloud[J]. Geomatics and Information Science of Wuhan University, 2017, 42(11): 1565-1572. DOI: 10.13203/j.whugis20150385
    [7]CHEN Chi, MAI Xiaoming, SONG Shuang, PENG Xiangyang, XU Wenxue, WANG Ke. Automatic Power Lines Extraction Method from Airborne LiDAR Point Cloud[J]. Geomatics and Information Science of Wuhan University, 2015, 40(12): 1600-1605. DOI: 10.13203/j.whugis20130573
    [8]ZHENG Shunyi, HU Hualiang, HUANG Rongyong, JI Zheng. Realtime Ranging of Power Transmission Line[J]. Geomatics and Information Science of Wuhan University, 2011, 36(6): 704-707.
    [9]WANG Wei, DU Daosheng, XIONG Hanjiang, ZHONG Jing. 3D Modeling and Data Organization of Power Transmission[J]. Geomatics and Information Science of Wuhan University, 2005, 30(11): 986-990.
    [10]YI Benshun. Research and Development of Optical Current and Voltage Transducers for Electrical Power System[J]. Geomatics and Information Science of Wuhan University, 2002, 27(1): 57-62.
  • Cited by

    Periodical cited type(26)

    1. 吴海,卢鹏,文诗宝,朱海鹏. 基于PS-InSAR技术的南宁地铁建设期沿线长时序沉降监测及形变分析. 工程勘察. 2025(03): 46-51+77 .
    2. 卫达宁,王世杰. 基于时序InSAR技术的西安地铁沿线沉降监测及预测分析. 地球物理学进展. 2024(02): 498-509 .
    3. 李益敏,计培琨,杨雪,李媛婷,冯显杰,向倩英. 基于PS-InSAR技术的地表形变监测与驱动力分析. 地理空间信息. 2024(09): 61-66+99 .
    4. 陈聪,董燕. 基于哨兵双极化数据的城市地表形变监测方法. 城市勘测. 2024(05): 100-105 .
    5. 聂运菊,熊倩,计玉芳,刘强. 曹妃甸新区PS-InSAR技术沉降监测及分析. 江西科学. 2023(01): 62-66 .
    6. 董耿志,星文太,周程,蔡永栋,张宏光. 基于InSAR及综合物探方法的道路塌陷分析. 测绘通报. 2023(03): 104-110 .
    7. 许俊伟,刘永胜,吴达,涂伟,李清泉. 隧道与地下工程监控量测技术的发展与展望. 测绘地理信息. 2023(03): 7-13 .
    8. 胡在良,邹友一,简国辉,袁慕策,解志峰. InSAR技术在城市环境轨道交通设施沉降监测中的应用. 铁道建筑. 2023(07): 144-148 .
    9. 李佳豪,周吕,陈冠宇,罗洁,杨飞,黄玲. 基于时序InSAR的上海市地面沉降时空演变特征分析. 测绘地理信息. 2023(05): 38-43 .
    10. 李一越,聂运菊,刘强. 基于InSAR技术对苏州主城区的地面沉降进行监测. 江西科学. 2023(05): 882-886+943 .
    11. 杨雨媚,王霞迎. 基于StaMPS的上海区域地表形变研究. 北京测绘. 2023(10): 1397-1401 .
    12. 李克冲,董张玉,杨学志. 面向地面沉降InSAR干涉图加权叠加方法. 计算机系统应用. 2022(01): 21-28 .
    13. 李佳豪,周吕,马俊,杨飞,咸凌霄. 利用PS-InSAR技术进行城市地铁沿线形变监测与机理分析. 测绘通报. 2022(04): 20-25 .
    14. 赵峰,张雷昕,王腾,汪云甲,闫世勇,范洪冬. 城市地表形变的双极化Sentinel-1数据极化时序InSAR技术监测. 武汉大学学报(信息科学版). 2022(09): 1507-1514 .
    15. 肖波,赵振峰,喜文飞,周定义,姜乃齐. 联合SBAS-InSAR和BP算法的滇中高速公路沿线沉降监测与预测. 城市勘测. 2022(06): 111-116 .
    16. 施显健,任超,周吕,黄远林,梁月吉,朱子林. InSAR填海区地铁沿线地表沉降反演分析. 测绘科学. 2021(02): 146-151+164 .
    17. 张介山,刘凯. 基于Sentinel-1A卫星数据的郑州地面沉降监测. 山西建筑. 2021(06): 72-75 .
    18. 张永光,田凡,李迎春,刘豪杰. 时序InSAR在南水北调中线形变监测中的应用. 长江科学院院报. 2021(08): 72-77 .
    19. 周吕,李佳豪,王成,李淑,朱子林,鲁金金. 基于时序InSAR的上海地区2018~2020地铁沿线沉降监测分析. 大地测量与地球动力学. 2021(11): 1177-1182 .
    20. 吴学雨,李明峰,董思学,王彬,赵志胜. 利用基于抗差垂直向方差分量估计的GPS-InSAR数据融合方法反演三维形变场. 测绘通报. 2021(12): 38-43 .
    21. 任超,施显健,周吕,黄远林,梁月吉,朱子林. 基于哨兵-1A时间序列合成孔经雷达的地铁沿线地面沉降监测与分析. 科学技术与工程. 2020(02): 803-808 .
    22. 聂建亮,刘晓云,田婕,李秀明,赵大江,黄功文,张海平. 利用自适应水准网动态平差建立山东垂直运动速度模型. 武汉大学学报(信息科学版). 2020(04): 620-625 .
    23. 刘琦,岳国森,丁孝兵,杨坤,冯光财,熊志强. 佛山地铁沿线时序InSAR形变时空特征分析. 武汉大学学报(信息科学版). 2019(07): 1099-1106 .
    24. 余永欣,杨伯钢,刘博文,王星杰,杨旭东,龚芸. 基于地理国情的城市地表沉降监测PS-InSAR技术研究与应用. 北京测绘. 2019(05): 527-531 .
    25. 孙健. 基于二等水准测量的矿区沉降监测研究分析. 北京测绘. 2019(08): 979-981 .
    26. 范军林,刘飞鹏,涂梨平. 基于D-InSAR技术的南昌市地表形变监测研究. 矿产与地质. 2019(03): 546-550+556 .

    Other cited types(28)

Catalog

    Article views (1977) PDF downloads (328) Cited by(54)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return