Citation: | FANG Xin, ZOU Bin, LIU Ning. An Aerosol Optical Depth Spatial Coverage Improvement Method Based on Spatial-Temporal Random Effects with Uncertainty Constraint[J]. Geomatics and Information Science of Wuhan University, 2020, 45(4): 534-541. DOI: 10.13203/j.whugis20180271 |
[1] |
Lee H J, Liu Y, Coull B A, et al. A Novel Calibration Approach of MODIS AOD Data to Predict PM2.5 Concentrations[J]. Atmospheric Chemistry & Physics, 2011, 11:7991-8002 http://www.oalib.com/paper/1369011#.XsIFj_m-DT4
|
[2] |
Puttaswamy S J, Nguyen H M, Braverman A, et al. Statistical Data Fusion of Multi-sensor AOD over the Continental United States[J]. Geocarto International, 2014, 29(1):48-64 doi: 10.1080/10106049.2013.827750
|
[3] |
Fang X, Zou B, Liu X, et al. Satellite-Based Ground PM2.5 Estimation Using Timely Structure Adaptive Modeling[J]. Remote Sensing of Environment, 2016, 186:152-163 doi: 10.1016/j.rse.2016.08.027
|
[4] |
李广超, 李如仁, 赵阳阳, 等.基于二次多项式的AOD数据融合方法[J].测绘通报, 2018(1):67-71 http://d.old.wanfangdata.com.cn/Periodical/chtb201801012
Li Guangchao, Li Ruren, Zhao Yangyang, et al. AOD Data Fusion Method Based on Quadratic Polynomial[J]. Bulletin of Surveying and Mapping, 2018(1):67-71 http://d.old.wanfangdata.com.cn/Periodical/chtb201801012
|
[5] |
王伟齐, 张成网, 臧增亮, 等. Terra和Aqua卫星MODIS 3 km AOD与北京PM2. 5对比分析[J].气象科学, 2017, 37(1):93-100 http://d.old.wanfangdata.com.cn/Periodical/qxkx201701011
Wang Weiqi, Zhang Chengwang, Zang Zengliang, et al. Comparative Analysis Between Hourly PM2.5 Concentration and MODIS 3 km Aerosol Optical Depth Derived from Terra and Aqua Satellites in Beijing[J]. Journal of the Meteorological Sciences, 2017, 37(1):93-100 http://d.old.wanfangdata.com.cn/Periodical/qxkx201701011
|
[6] |
Xu H, Guang J, Xue Y, et al. A Consistent Aerosol Optical Depth (AOD) Dataset over Mainland China by Integration of Several AOD Products[J]. Atmospheric Environment, 2015, 114:48-56 doi: 10.1016/j.atmosenv.2015.05.023
|
[7] |
Tobler W R. A Computer Movie Simulating Urban Growth in the Detroit Region[J]. Economic Geography, 1970, 46:234-240 doi: 10.2307-143141/
|
[8] |
李龙, 施润和, 张璐, 等.华东地区MODIS与OMI气溶胶光学厚度数据融合[J].地球信息科学学报, 2015, 17(10):1224-1233 http://d.old.wanfangdata.com.cn/Periodical/dqxxkx201510011
Li Long, Shi Runhe, Zhang Lu, et al. Data Fusion of MODIS AOD and OMI AOD over East China Using Universal Kriging[J]. Journal of Geo information Science, 2015, 17(10):1224-1233 http://d.old.wanfangdata.com.cn/Periodical/dqxxkx201510011
|
[9] |
Nguyen H, Cressie N, Braverman A. Spatial Statistical Data Fusion for Remote Sensing Applications[J]. Journal of the American Statistical Association, 2012, 107(499):1004-1018 doi: 10.1080/01621459.2012.694717
|
[10] |
Cressie N, Shi T, Kang E L. Fixed Rank Filtering for Spatio-temporal Data[J]. Journal of Computational & Graphical Statistics, 2010, 19(3):724-745 doi: 10.1198/jcgs.2010.09051
|
[11] |
Kang E L, Cressie N, Shi T. Using Temporal Variability to Improve Spatial Mapping with Application to Satellite Data[J]. Canadian Journal of Statistics, 2010, 38(2):271-289 doi: 10.1002/cjs.10063
|
[12] |
Tang Q, Bo Y, Zhu Y. Spatiotemporal Fusion of Multiple-satellite Aerosol Optical Depth (AOD) Products Using Bayesian Maximum Entropy Method[J]. Journal of Geophysical Research:Atmospheres, 2016, 121(8):4034-4048 doi: 10.1002/2015JD024571
|
[13] |
Katzfuss M, Cressie N. Spatio-temporal Smoothing and EM Estimation for Massive Remote-Sensing Data Sets[J]. Journal of Time Series Analysis, 2011, 32(4):430-446 doi: 10.1111/j.1467-9892.2011.00732.x
|
[14] |
Katzfuss M, Cressie N. Bayesian Hierarchical Spatio-temporal Smoothing for very Large Datasets[J]. Environmetrics, 2012, 23(1):94-107 https://www.researchgate.net/publication/263479580_Bayesian_hierarchical_spatio-temporal_smoothing_for_very_large_datasets
|
[15] |
Cressie N, Johannesson G. Fixed Rank Kriging for very Large Spatial Data Sets[J]. Journal of the Royal Statistical Society, 2008, 70(1):209-226 https://www.jstor.org/stable/20203819
|
[16] |
Liu Y, Sarnat J A, Coull B A, et al. Validation of Multiangle Imaging Spectroradiometer(MISR)Aerosol Optical Thickness Measurements Using Aerosol Robotic Network (AERONET) Observations over the Contiguous United States[J]. Journal of Geophysical Research:Atmospheres, 004, 109(D06):D06205 doi: 10.1029/2003JD003981
|
[17] |
Tang G, Zhang J, Zhu X, et al. Mixing Layer Height and Its Implications for Air Pollution over Beijing, China[J]. Atmospheric Chemistry and Physics, 2016, 16(4):2459-2475 doi: 10.5194/acp-16-2459-2016
|
[18] |
郭阳洁, 洪松, 庄艳华, 等.湖北省气溶胶光学厚度时空分布特征研究[J].武汉大学学报·信息科学版, 2010, 35(11):1381-1385 http://ch.whu.edu.cn/CN/abstract/abstract1114.shtml
Guo Yangjie, Hong Song, Zhuang Yanhua, et al. Temporal Variation and Spatial Distribution of Atmospheric Aerosols over Hubei Province[J]. Geomatics and Information Science of Wuhan University, 2010, 35(11):1381-1385 http://ch.whu.edu.cn/CN/abstract/abstract1114.shtml
|
[19] |
王华, 郭阳洁, 洪松, 等.区域气溶胶学厚度空间格局特征研究[J].武汉大学学报·信息科学版, 2013, 38(7):869-874 http://ch.whu.edu.cn/CN/abstract/abstract2706.shtml
Wang Hua, Guo Yangjie, Hong Song, et al. Spatial Pattern Characteristics of Aerosol Optical Depth in a Region Based on Spatial Autocorrelation[J]. Geomatics and Information Science of Wuhan University, 2013, 38(7):869-874 http://ch.whu.edu.cn/CN/abstract/abstract2706.shtml
|
[1] | GUO Wenfei, ZHU Mengmeng, GU Shengfeng, ZUO Hongming, CHEN Jinxin. GNSS Precise Time-Frequency Receiver Clock Steering Model and Parameter Design Method[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1126-1133. DOI: 10.13203/j.whugis20220458 |
[2] | SUN Leyuan, YANG Jun, GUO Xiye, HUANG Wende. Frequency Performance Evaluation of BeiDou-3 Satellite Atomic Clocks[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20200486 |
[3] | WU Yiwei, YANG Bin, XIAO Shenghong, WANG Maolei. Atomic Clock Models and Frequency Stability Analyses[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1226-1232. DOI: 10.13203/j.whugis20180058 |
[4] | AN Xiangdong, CHEN Hua, JIANG Weiping, XIAO Yugang, ZHAO Wen. GLONASS Ambiguity Resolution Method Based on Long Baselines and Experimental Analysis[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5): 690-698. DOI: 10.13203/j.whugis20170091 |
[5] | LI Mingzhe, ZHANG Shaocheng, HU Youjian, HOU Weizhen. Comparison of GNSS Satellite Clock Stability Based on High Frequency Observations[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1490-1495, 1503. DOI: 10.13203/j.whugis20160537 |
[6] | WANG Ning, WANG Yupu, LI Linyang, ZHAI Shufeng, LV Zhiping. Stability Analysis of the Space-borne Atomic Clock Frequency for BDS[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1256-1263. DOI: 10.13203/j.whugis20150806 |
[7] | LIU Zhiqiang, YUE Dongjie, WANG Hu, ZHENG Dehua. An Approach for Real-Time GPS/GLONASS Satellite Clock Estimation with GLONASS Code Inter-Frequency Biases Compensation[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1209-1215. DOI: 10.13203/j.whugis20150542 |
[8] | HUANG Guanwen, YU Hang, GUO Hairong, ZHANG Juqing, FU Wenju, TIAN Jie. Analysis of the Mid-long Term Characterization for BDS On-orbit Satellite Clocks[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 982-988. DOI: 10.13203/j.whugis20140827 |
[9] | MAO Yue, CHEN Jianpeng, DAI Wei, JIA Xiaolin. Analysis of On-board Atomic Clock Stability Influences[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1182-1186. |
[10] | GUO Hairong, YANG Yuanxi. Analyses of Main Error Sources on Time-Domain Frequency Stability for Atomic Clocks of Navigation Satellites[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 218-221. |