YE Min, WANG Bin, WANG Siyuan, LIU Changzheng, LI Yanxia, CEN Wei. Extracting Floor Area Ratio of the Classified Buildings from Very High Resolution Satellite Image Using Multiple Features[J]. Geomatics and Information Science of Wuhan University, 2019, 44(11): 1674-1684. DOI: 10.13203/j.whugis20180241
Citation: YE Min, WANG Bin, WANG Siyuan, LIU Changzheng, LI Yanxia, CEN Wei. Extracting Floor Area Ratio of the Classified Buildings from Very High Resolution Satellite Image Using Multiple Features[J]. Geomatics and Information Science of Wuhan University, 2019, 44(11): 1674-1684. DOI: 10.13203/j.whugis20180241

Extracting Floor Area Ratio of the Classified Buildings from Very High Resolution Satellite Image Using Multiple Features

Funds: 

Natural Science Foundation of China 91547107

Natural Science Foundation of China 41428103

Xinjiang Production and Construction Corps (XPCC) Scientific and Technological Project 2015AD018

More Information
  • Author Bio:

    YE Min, postgraduate, specializes in intersection between remote sensing information and rail transit information. E-mail:16121176@bjtu.edu.cn

  • Corresponding author:

    WANG Bin, associate professor. E-mail: bwang@bjtu.edu.cn

  • Received Date: August 15, 2018
  • Published Date: November 04, 2019
  • With the rapid development of urbanization, problems such as shortage of land resource and low efficiency of land use have emerge and grown increasingly serious. The extraction of floor area ratio of the classified buildings in urban areas is of great significance to the floor area ratio(FAR) management and regulatory detailed planning in urban land development. Moreover, high-resolution data which provide analysis results of high precision are under comprehensive application in various lines of work, especially in the field of territorial resources. Given these, an object-based method for FAR extraction from very high resolution satellite image using multiple features, which are principal components, main direction, border index and rectangular fit, and Bayesian classifier is proposed. Meanwhile, FAR extraction results calculated via shadow area and shadow length are compared. We applied this method to a clip of WorldView-3 image and validated the FAR results of building units included one by one. Experimental results show that the average accuracy for shadow area method is 93.90% and 85.19% for shadow length method and shadow area method is more effective than shadow length method.
  • [1]
    陈基伟, 韩雪培.高分辨率遥感影像建筑容积率提取方法研究[J].武汉大学学报·信息科学版, 2005, 30(7):580-582 http://ch.whu.edu.cn/CN/abstract/abstract2224.shtml

    Chen Jiwei, Han Xuepei. Semiautomatic Extraction of Floor Area Ratio Based on Construction Shadow in High Resolution Remote Sensing Image[J]. Geomatics and Information Science of Wuhan University, 2005, 30(7):580-582 http://ch.whu.edu.cn/CN/abstract/abstract2224.shtml
    [2]
    韩雪培, 徐建刚, 付小毛.基于高分辨率遥感影像的城市建筑容积率估算方法研究:以上海市中心城区为例[J].遥感信息, 2005(2):24-28 doi: 10.3969/j.issn.1000-3177.2005.02.007

    Han Xuepei, Xu Jiangang, Fu Xiaomao. A Study on Estimating Urban FAR Based on High-Resolution Satellite Images[J]. Remote Sensing Information, 2005(2):24-28 doi: 10.3969/j.issn.1000-3177.2005.02.007
    [3]
    刘慧军, 沈权, 陈蓉.城市规划管理中容积率分层确定机制探讨[J].规划师, 2013(7):74-78 doi: 10.3969/j.issn.1006-0022.2013.07.013

    Liu Huijun, Shen Quan, Chen Rong. Tiered FAR Management[J]. Planners, 2013(7): 74-78 doi: 10.3969/j.issn.1006-0022.2013.07.013
    [4]
    Gonzalez-Aguilera D, Crespo-Matellan E, Hernandez-Lopez D, et al. Automated Urban Analysis Based on LiDAR-Derived Building Models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(3): 1 844-1 851 doi: 10.1109/TGRS.2012.2205931
    [5]
    Kajimoto M, Susaki J. Urban Density Estimation from Polarimetric SAR Images Based on a POA Correction Method[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(3): 1 418-1 429 doi: 10.1109/JSTARS.2013.2255584
    [6]
    王慧青, 沙月进, 王庆, 等.数字近景摄影测量建筑容积率调查技术研究[J].测绘科学, 2010, 35(6):126-128 http://d.old.wanfangdata.com.cn/Periodical/chkx201006043

    Wang Huiqing, Sha Yuejin, Wang Qing, et al. Plot Ratio Survey Technology Based on Digital Close-Range Photogrammetry[J]. Science of Surveying and Mapping, 2010, 35(6): 126-128 http://d.old.wanfangdata.com.cn/Periodical/chkx201006043
    [7]
    赵翠晓, 陈曦, 杨辽, 等.基于DSM的建筑物容积率提取[J].测绘科学, 2017, 42(5):1-9 http://www.cnki.com.cn/Article/CJFDTOTAL-CHKD2017041100D.htm

    Zhao Cuixiao, Chen Xi, Yang Liao, et al. Extraction of Floor Area Ratio Based on DSM[J]. Science of Surveying and Mapping, 2017, 42(5): 1-9 http://www.cnki.com.cn/Article/CJFDTOTAL-CHKD2017041100D.htm
    [8]
    杨冀红, 左玉强, 苏航, 等.基于星载立体像对的容积率提取研究[J].河南理工大学学报(自然科学版), 2018, 37(1):54-59 http://d.old.wanfangdata.com.cn/Periodical/jzgxyxb201801008

    Yang Jihong, Zuo Yuqiang, Su Hang, et al. Research on Floor Area Ratio Extraction Based on Space-Borne Stereo Pair[J]. Journal of Henan Polytechnic University (Natural Science), 2018, 37(1): 54-59 http://d.old.wanfangdata.com.cn/Periodical/jzgxyxb201801008
    [9]
    刘辉.基于改进阴影指数的福州市主城区建筑容积率提取[J].武汉大学学报·信息科学版, 2014, 39(10):1 241-1 247 http://ch.whu.edu.cn/CN/abstract/abstract3103.shtml

    Liu Hui. Extraction of the Floor Area Ratio in the Central District of Fuzhou City Based on an Improves Shadow Index Model[J]. Geomatics and Information Science of Wuhan University, 2014, 39(10): 1 241-1 247 http://ch.whu.edu.cn/CN/abstract/abstract3103.shtml
    [10]
    李锦业, 张磊, 吴炳方, 等.基于高分辨率遥感影像的城市建筑密度和容积率提取方法研究[J].遥感技术与应用, 2007, 22(3):309-313 doi: 10.3969/j.issn.1004-0323.2007.03.002

    Li Jinye, Zhang Lei, Wu Bingfang. Study on Extracting Building Density and Floor Area Ratio Based on High Resolution Image[J].Remote Sensing Technology and Application, 2007, 22(3): 309-313 doi: 10.3969/j.issn.1004-0323.2007.03.002
    [11]
    霍少峰, 顾行发, 占玉林, 等.利用资源三号卫星影像阴影提取建筑容积率[J].武汉大学学报·信息科学版, 2018, 43(3):444-450 http://ch.whu.edu.cn/CN/abstract/abstract6004.shtml

    Huo Shaofeng, Gu Xingfa, Zhan Yulin, et al. Extracting Building Plot Ratio with Shadow of ZY-3 Image[J]. Geomatics and Information Science of Wuhan University, 2018, 43(3): 444-450 http://ch.whu.edu.cn/CN/abstract/abstract6004.shtml
    [12]
    童旭东.中国高分辨率对地观测系统重大专项建设进展[J].遥感学报, 2016, 20(5):775-780 http://d.old.wanfangdata.com.cn/Periodical/ygxb201605009

    Tong Xudong. Development of China High-Resolution Earth Observation System[J]. Journal of Remote Sensing, 2016, 20(5): 775-780 http://d.old.wanfangdata.com.cn/Periodical/ygxb201605009
    [13]
    陶建斌.贝叶斯网络模型在遥感影像分类中的应用方法研究[D].武汉: 武汉大学, 2010

    Tao Jianbin. Research on Applications of Bayesian Network Model in the Classification of Remote Sensing Images[D]. Wuhan: Wuhan University, 2010
    [14]
    李航.统计学习方法[M].北京:清华大学出版社, 2012

    Li Hang. Methods of Statistical Learning[M]. Beijing: Tsinghua University Press, 2012
    [15]
    Adeline K, Chen M, Briottet X, et al. Shadow Detection in Very High Spatial Resolution Aerial Images: A Comparative Study[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 80: 21-38 doi: 10.1016/j.isprsjprs.2013.02.003
    [16]
    赵英时.遥感应用分析原理与方法[M].第2版.北京:科学出版社, 2013:174-175

    Zhao Yingshi. Remote Sensing Application Analysis Principals and Methods[M].2nd ed.Beijing: Science Press, 2013: 174-175
    [17]
    Li M, Stein A, Bijker W. Urban Land Use Extraction from Very High Resolution Remote Sensing Imagery Using a Bayesian Network[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 122: 192-205 doi: 10.1016/j.isprsjprs.2016.10.007
    [18]
    李林蔓.分层抽样下样本量的分配方法研究[J].统计与决策, 2015(19):18-20 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=666231757

    Li Linman. Research on the Allocation of Sample Size Under Stratified Sampling[J]. Statistics and Decision, 2015(19):18-20 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=666231757
    [19]
    邵志强.抽样调查中样本容量的确定方法[J].统计与决策, 2012(22):12-14 http://d.old.wanfangdata.com.cn/Periodical/tjyjc201222004

    Shao Zhiqiang. Method for Determining Sample Size in Sample Survey[J]. Statistics and Decision, 2012(22): 12-14 http://d.old.wanfangdata.com.cn/Periodical/tjyjc201222004
    [20]
    中华人民共和国住房和城乡建设部. GB50096-2011住宅设计规范[S].北京: 中国建筑工业出版社, 2011

    Ministry of Housing and Urban-Rural Development of the People?s Republic of China. GB50096-2011 Residential Design Specification[S]. Beijing: China Architecture & Building Press, 2011
  • Related Articles

    [1]MA Jingzhen, SUN Qun, WEN Bowei, ZHOU Zhao, LU Chuanwei, LÜ Zheng, SUN Shijie. A Hybrid Multi-feature Road Network Selection Method Based on Trajectory Data[J]. Geomatics and Information Science of Wuhan University, 2022, 47(7): 1009-1016. DOI: 10.13203/j.whugis20190480
    [2]YANG Hao, HE Zongyi, CHEN Huayang, ZHOU Zhuanxiang, FAN Yong. A Method for Automatic Generalization of Urban Settlements Considering Road Network[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6): 965-970. DOI: 10.13203/j.whugis20160094
    [3]CAO Weiwei, ZHANG Hong, HE Jing, LAN Tian. Road Selection Considering Structural and Geometric Properties[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 520-524. DOI: 10.13203/j.whugis20140862
    [4]YANG Lin, WAN Bo, WANG Run, ZUO Zejun, AN Xiaoya. Matching Road Network Based on the Structural Relationship Constraint of Hierarchical Strokes[J]. Geomatics and Information Science of Wuhan University, 2015, 40(12): 1661-1668. DOI: 10.13203/j.whugis20140295
    [5]tianjin g, renchan g, wangyihen g, xiongfu q uan, leiyin g zhe. imp rovementofself-best-fitstrate gyforstrokebuildin g[J]. Geomatics and Information Science of Wuhan University, 2015, 40(9): 1209-1214. DOI: 10.13203/j .whu g is20140455
    [6]LIU Hailong, QIAN Haizhong, WANG Xiao, HE Haiwei. Road Networks Global Matching Method Using Analytical Hierarchy Process[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5): 644-651. DOI: 10.13203/j.whugis20130350
    [7]TIAN Jing, HE Qingsong, YAN Fen. Formalization and New Algorithm of stroke Generation in Road Networks[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5): 556-560. DOI: 10.13203/j.whugis20120127
    [8]TIAN Jing, WU Dang, ZHAN Yifei. Degree Correlation of Urban Street Networks[J]. Geomatics and Information Science of Wuhan University, 2014, 39(3): 332-334. DOI: 10.13203/j.whugis20120675
    [9]CHEN Jun, HU Yungang, ZHAO Renliang, LI Zhilin. Road Data Updating Based on Map Generalization[J]. Geomatics and Information Science of Wuhan University, 2007, 32(11): 1022-1027.
    [10]HUANG Shuqiang, SUN Chengzhi, FU Zhongliang. License Plate Binarization Algorithm Based on the Features of Characters' Strokes[J]. Geomatics and Information Science of Wuhan University, 2003, 28(1): 71-73,79.
  • Cited by

    Periodical cited type(9)

    1. 赵天明,孙群,马京振,张付兵,温伯威. 融合路段和stroke特征的道路自动选取方法. 地球信息科学学报. 2024(12): 2673-2685 .
    2. 郭漩,钱海忠,王骁,刘俊楠,任琰,赵钰哲,陈国庆. 多源道路智能选取的本体知识推理方法. 测绘学报. 2022(02): 279-289 .
    3. 马京振,孙群,温伯威,周炤,陆川伟,吕峥,孙士杰. 结合轨迹数据的混合多特征道路网选取方法. 武汉大学学报(信息科学版). 2022(07): 1009-1016 .
    4. 朱余德,杨敏,晏雄锋. 利用图卷积神经网络的道路网选取方法. 北京测绘. 2022(11): 1455-1459 .
    5. 韩远,王中辉,徐智邦,余贝贝. 结合引力场理论的道路自动选取方法. 测绘科学. 2021(01): 189-195 .
    6. 韩远,王中辉,禄小敏. POI辅助下的道路选取. 测绘科学. 2021(04): 165-171 .
    7. 陈晓东,余劲松弟. 顾及语义关联信息的道路选取方法. 海南大学学报(自然科学版). 2021(03): 227-234 .
    8. 王晓妍. 土地利用图中线状要素综合的质量评价. 测绘通报. 2020(04): 116-120 .
    9. 冯云,朱素华,孙益清,王金鑫. 郑州轨道交通5号线开通对城市交通格局的影响. 城市勘测. 2020(04): 54-58 .

    Other cited types(11)

Catalog

    Article views (1650) PDF downloads (139) Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return