ZHANG Liangpei, LIU Rong, DU Bo. Hyperspectral Remote Sensing Image Processing by Using Quantum Optimization Algorithm[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1811-1818. DOI: 10.13203/j.whugis20180231
Citation: ZHANG Liangpei, LIU Rong, DU Bo. Hyperspectral Remote Sensing Image Processing by Using Quantum Optimization Algorithm[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1811-1818. DOI: 10.13203/j.whugis20180231

Hyperspectral Remote Sensing Image Processing by Using Quantum Optimization Algorithm

Funds: 

The National Natural Science Foundation of China 41431175

More Information
  • Author Bio:

    ZHANG Liangpei, PhD, professor, specializes in hyperspectral remote sensing, high resolution remote sensing and remote sensing application. E-mail: zlp62@whu.edu.cn

  • Corresponding author:

    DU Bo, PhD, professor. E-mail: gunspace@163.com

  • Received Date: August 13, 2018
  • Published Date: December 04, 2018
  • Hyperspectral remote sensing technology has become an important part of ground observation since the 1980s, and it is the main data source of information acquisition for ground objects. Hyperspectral image (HSIs) not only contains spatial information, but also contains abundant spectral information with tens to hundreds of contiguous spectral bands. The abundant spectral information of HSIs can help us better identify ground objects, which has greatly improved our ability to qualitatively and quantitatively sense the earth's surface. It has been intensively researched to make full use of both spatial and spectral information of HSIs, so as to accurately obtain the information of ground objects. This paper reviews quantum optimization algorithm-based hyperspectral image processing me-thods. The development and methodology of quantum optimization algorithm as well as its application in hyperspectral image processing are introduced. And some suggestion and expectation for further study of the quantum optimization algorithm-based hyperspectral image processing are given.
  • [1]
    张良培, 杜博, 张乐飞.高光谱遥感影像处理[M].北京:科学出版社, 2014

    Zhang Liangpei, Du Bo, Zhang Lefei. Hyperspectral Image Processing[M]. Beijing:Science Press, 2014
    [2]
    安如, 陆彩红, 王慧麟, 等.三江源典型区草地退化Hyperion高光谱遥感识别研究[J].武汉大学学报·信息科学版, 2018, 43(3):399-405 http://ch.whu.edu.cn/CN/abstract/abstract5998.shtml

    An Ru, Lu Caihong, Wang Huilin, et al. Remote Sensing Identification of Rangeland Degradation Using Hyperion Hyperspectral Image in a Typical Area for Three-River Headwater Region, Qinghai, China[J]. Geomatics and Information Science of Wuhan University, 2018, 43(3):399-405 http://ch.whu.edu.cn/CN/abstract/abstract5998.shtml
    [3]
    Onojeghuo A O, Blackburn G A, Huang J, et al. Applications of Satellite 'Hyper-Sensing' in Chinese Agriculture:Challenges and Opportunities[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 64:62-86 doi: 10.1016/j.jag.2017.09.005
    [4]
    秦占飞, 申健, 谢宝妮, 等.引黄灌区水稻叶面积指数的高光谱估测模型[J].武汉大学学报·信息科学版, 2017, 42(8):1159-1166 http://ch.whu.edu.cn/CN/abstract/abstract5811.shtml

    Qin Zhanfei, Shen Jian, Xie Baoni, et al. Hyperspectral Estimation Model for Predicting LAI of Rice in Ningxia Irrigation Zone[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8):1159-1166 http://ch.whu.edu.cn/CN/abstract/abstract5811.shtml
    [5]
    Yue J, Feng H, Yang G, et al. A Comparison of Regression Techniques for Estimation of Above-Ground Winter Wheat Biomass Using Near-Surface Spectroscopy[J]. Remote Sensing, 2018, 10(1):66 http://adsabs.harvard.edu/abs/2018RemS...10...66Y
    [6]
    Zhong Y, Zhang L. An Adaptive Artificial Immune Network for Supervised Classification of Multi-/Hyperspectral Remote Sensing Imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(3):894-909 doi: 10.1109/TGRS.2011.2162589
    [7]
    Zhong Y, Zhang S, Zhang L. Automatic Fuzzy Clustering Based on Adaptive Multi-Objective Differential Evolution for Remote Sensing Imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(5):2290-2301 doi: 10.1109/JSTARS.2013.2240655
    [8]
    Zhong Y, Zhao L, Zhang L. An Adaptive Differential Evolution Endmember Extraction Algorithm for Hyperspectral Remote Sensing Imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(6):1061-1065 doi: 10.1109/LGRS.2013.2285476
    [9]
    Zhong Y, Cao Q, Zhao J, et al. Optimal Decision Fusion for Urban Land-Use/Land-Cover Classification Based on Adaptive Differential Evolution Using Hyperspectral and LiDAR Data[J]. Remote Sen-sing, 2017, 9(8):868 doi: 10.3390/rs9080868
    [10]
    Feng J, Jiao L C, Zhang X, et al. Hyperspectral Band Selection Based on Trivariate Mutual Information and Clonal Selection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(7):4092-4105 doi: 10.1109/TGRS.2013.2279591
    [11]
    Zhang B, Sun X, Gao L, et al. Endmember Extraction of Hyperspectral Remote Sensing Images Based on the Discrete Particle Swarm Optimization Algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(11):4173-4176 doi: 10.1109/TGRS.2011.2131145
    [12]
    Zhang B, Sun X, Gao L, et al. Endmember Extraction of Hyperspectral Remote Sensing Images Based on the Ant Colony Optimization (ACO) Algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(7):2635-2646 doi: 10.1109/TGRS.2011.2108305
    [13]
    Zhang B, Gao J, Gao L, et al. Improvements in the Ant Colony Optimization Algorithm for Endmember Extraction from Hyperspectral Images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(2):522-530 doi: 10.1109/JSTARS.2012.2236821
    [14]
    Shor P W. Algorithms for Quantum Computation: [C]. IEEE Symposium on Foundations of Computer Science, Mitwaukee, WI, USA, 1995
    [15]
    Grover L K. A Fast Quantum Mechanical Algorithm for Database Search[C]. 28th ACM Symposium on Theory of Computing, Philadelphia, USA, 1996
    [16]
    Li P, Li S. Quantum Ant Colony Algorithm for Continuous Space Optimization[J]. Control Theory and Applications, 2008, 25(2):237-241
    [17]
    Han K H, Kim J H. Genetic Quantum Algorithm and Its Application to Combinatorial Optimization Problem[C]. The IEEE 2000 Congress on Evolutionary Computation, La Jolla, USA, 2002
    [18]
    Sun J, Feng B, Xu W. Particle Swarm Optimization with Particles Having Quantum Behavior[C]. IEEE Congress on Evolutionary Computation, California, USA, 2004
    [19]
    Hinterding R. Representation, Constraint Satisfaction and the Knapsack Problem[C]. The IEEE Congress on Evolutionary Computation, Washington D C, USA, 1999
    [20]
    Hey T. Quantum Computing:An Introduction[J]. Computing and Control Engineering Journal, 1998, 10(3):105-112 http://d.old.wanfangdata.com.cn/Periodical/xdjsj-xby201515004
    [21]
    Clerc M, Kennedy J. The Particle Swarm-Explosion, Stability, and Convergence in a Multidimensional Complex Space[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(1):58-73 doi: 10.1109/4235.985692
    [22]
    Sun J, Fang W, Wu X, et al. Quantum-Behaved Particle Swarm Optimization:Analysis of Individual Particle Behavior and Parameter Selection[J]. Evolutionary Computation, 2012, 20(3):349-393 doi: 10.1162/EVCO_a_00049
    [23]
    Du B, Zhang L. Target Detection Based on a Dynamic Subspace[J]. Pattern Recognition, 2014, 47(1):344-358 http://dl.acm.org/citation.cfm?id=2533549
    [24]
    Li N, Du P, Zhao H. Independent Component Analysis Based on Improved Quantum Genetic Algorithm: Application in Hyperspectral Images[C]. IEEE International Geoscience and Remote Sensing Symposium, Seoul, Korea, 2005
    [25]
    Boardman J W. Automating Spectral Unmixing of AVIRIS Data Using Convex Geometry Concepts[C]. 4th Annu JPL Airborne Geoscience Workshop, Washington D C, USA, 1993
    [26]
    Winter M E. N-FINDR:An Algorithm for Fast Autonomous Spectral End-Member Determination in Hyperspectral Data[J]. Proceedings of SPIE-The International Society for Optical Enginee-ring, 1999, 3753:266-275 http://d.old.wanfangdata.com.cn/Periodical/dzkxxk201202041
    [27]
    Chang C I, Wu C C, Liu W, et al. A New Growing Method for Simplex-Based Endmember Extraction Algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(10):2804-2819 doi: 10.1109/TGRS.2006.881803
    [28]
    Chan T H, Ma W K, Ambikapathi A M, et al. A Simplex Volume Maximization Framework for Hyperspectral Endmember Extraction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(11):4177-4193 doi: 10.1109/TGRS.2011.2141672
    [29]
    Du Q. A New Sequential Algorithm for Hyperspectral Endmember Extraction[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(4):695-699 doi: 10.1109/LGRS.2011.2178815
    [30]
    Luo W, Zhang B, Jia X. New Improvements in Pa-rallel Implementation of N-FINDR Algorithm[J]. IEEE Transactions on Geoscience and Remote Sen-sing, 2012, 50(10):3648-3659 doi: 10.1109/TGRS.2012.2185056
    [31]
    Liu R, Zhang L, Du B. A Novel Endmember Extraction Method for Hyperspectral Imagery Based on Quantum-Behaved Particle Swarm Optimization[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(4):1610-1631 doi: 10.1109/JSTARS.2016.2640274
    [32]
    Xu M, Zhang L, Du B, et al. A Mutation Operator Accelerated Quantum-Behaved Particle Swarm Optimization Algorithm for Hyperspectral Endmember Extraction[J]. Remote Sensing, 2017, 9(3):197 doi: 10.3390/rs9030197
    [33]
    Atkinson P M. Mapping Sub-pixel Boundaries from Remotely Sensed Images[J]. Innovations in GIS, 1997, 4:167-180 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0227548819/
    [34]
    Villa A, Chanussot J, Benediktsson J A, et al. Unsupervised Methods for the Classification of Hyperspectral Images with Low Spatial Resolution[J]. Pattern Recognition, 2013, 46(6):1556-1568 doi: 10.1016/j.patcog.2012.10.030
    [35]
    Thornton M W, Atkinson P M, Holland D A. Sub-pixel Mapping of Rural Land Cover Objects from Fine Spatial Resolution Satellite Sensor Imagery Using Super-Resolution Pixel-Swapping[J]. International Journal of Remote Sensing, 2006, 27(3):473-491 doi: 10.1080/01431160500207088
    [36]
    Ertürk A, Güllü M K, Çeşmeci D, et al. Spatial Resolution Enhancement of Hyperspectral Images Using Unmixing and Binary Particle Swarm Optimization[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(12):2100-2104 doi: 10.1109/LGRS.2014.2320135
  • Related Articles

    [1]GAO Yang, SHA Hai, CHU Henglin, WANG Mengli. Non-ideality Characteristic Analysis and Receiver Design Constraints Recommendation for BDS B1C and B2a Signals[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4): 587-592. DOI: 10.13203/j.whugis20200568
    [2]LI Jianan, LI Yu, ZHAO Quanhua, JIANG Haonan, HONG Yong. SAR Image Absolute Radiometric Calibration Based on RCS Modeling of Communication Tower[J]. Geomatics and Information Science of Wuhan University, 2021, 46(11): 1746-1755. DOI: 10.13203/j.whugis20210052
    [3]XIE Ping, ZHANG Shuangxi, WANG Haihong, WU Tengfei, CAI Jianfeng. Cross Wavelet Analysis on the Influence of the Three Gorges Dam Impounding on the Reservoir Precipitation[J]. Geomatics and Information Science of Wuhan University, 2019, 44(6): 821-829, 907. DOI: 10.13203/j.whugis20180410
    [4]YANG Jie, CHANG Yonglei, LI Pingxiang, ZHAO Lingli, SHI Lei. Distributed Targets Extraction for SAR Polarimetric Calibration Using Helix Scattering[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2023-2029. DOI: 10.13203/j.whugis20180180
    [5]XU Xiyu, WANG Zhenzhan, XU Ke. Application of Laser Tracking Technology to Absolute Calibration of Space-borne Radar Altimeters[J]. Geomatics and Information Science of Wuhan University, 2017, 42(1): 103-108. DOI: 10.13203/j.whugis20140542
    [6]WENG Yinkan, LI Song, YANG Jinling, YI Hong, WANG Hong, MA Yue. Fast Solution to the RCS of Corner Reflector for the SAR Radiometric Calibration[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1551-1556. DOI: 10.13203/j.whugis20130613
    [7]LIAO Lu, LI Pingxiang, YANG Jie, CHANG Hong. An Improved Method to SAR Polarimetric Calibration Based on Reciprocity Judgement Using Distributed Target[J]. Geomatics and Information Science of Wuhan University, 2015, 40(8): 1042-1047. DOI: 10.13203/j.whugis20140096
    [8]JIN Taoyong, HU Minzhang, JIANG Tao, ZHANG Shoujian. Cross-Calibration and Errors Analysis of Ionosphere Correction in Satellite Altimetry[J]. Geomatics and Information Science of Wuhan University, 2012, 37(6): 658-661.
    [9]WEN Xingping, HU Guangdao, YANG Xiaofeng. Cross Calibration of CBERS-02 CCD Image Based on the Pseudo-invariant Reflectance Targets[J]. Geomatics and Information Science of Wuhan University, 2009, 34(4): 409-413.
    [10]SUN Zhongmiao, XIA Zheren, LI Yingchun. Cross-Coupling Correction for LaCoste&Romberg Airborne Gravimeter[J]. Geomatics and Information Science of Wuhan University, 2006, 31(10): 883-886.
  • Cited by

    Periodical cited type(6)

    1. 严颂华,梅捷,陈永谦,陈璨. 地基GNSS-R公路边坡形变监测实验及误差分析. 武汉大学学报(信息科学版). 2024(01): 100-108 .
    2. 邓垦,周佩元,杜兰,蔡巍. 多系统单频紧组合GNSS-R测高方法. 武汉大学学报(信息科学版). 2024(01): 146-155 .
    3. 侯金华,贺凯飞,高凡,储倜,吴宇. 岸基BDS-R海面测高及其观测值加权方法. 北京航空航天大学学报. 2024(03): 1015-1026 .
    4. 张云,赵乐久,孟婉婷,秦瑾,盛志超,杨树瑚. 北斗卫星反射信号岸基海面高度反演精度的评估. 北京航空航天大学学报. 2023(05): 999-1008 .
    5. 桑文刚,刘迎春,何秀凤,王昭然. 库区GNSS-R精细化反演水面高度及其验证研究. 全球定位系统. 2022(01): 43-48 .
    6. 邢进,刘思琦,王峰,张国栋,俞永庆,王林峰. 岸基GNSS-R海洋遥感系统设计与实现. 无线电工程. 2021(10): 1104-1109 .

    Other cited types(6)

Catalog

    Article views PDF downloads Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return