SHAO Zhenfeng, ZHANG Yuan, HUANG Xin, ZHU Xiuli, WU Liang, WAN Bo. Mapping Impervious Surface with 2 m Using Multi-source High Resolution Remote Sensing Images[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1909-1915. DOI: 10.13203/j.whugis20180196
Citation: SHAO Zhenfeng, ZHANG Yuan, HUANG Xin, ZHU Xiuli, WU Liang, WAN Bo. Mapping Impervious Surface with 2 m Using Multi-source High Resolution Remote Sensing Images[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1909-1915. DOI: 10.13203/j.whugis20180196

Mapping Impervious Surface with 2 m Using Multi-source High Resolution Remote Sensing Images

Funds: 

The National Key R & D Plan on Strategic International Scientific and Technological Innovation Cooperation Special Project 2016YFE0202300

Wuhan Chenguang Project, 2016070204010114

Guangzhou Science and Technology Project 201604020070

Special Task of Technical Innovation in Hubei Province 2016AAA018

the National Natural Science Foundation of China 61671332

the National Natural Science Foundation of China 41771452

the National Natural Science Foundation of China 41771454

More Information
  • Author Bio:

    SHAO Zhenfeng, professor. He is concentrated on the research and education in spatial information science and technology represented by urban remote sensing, etc. E-mail:shaozhenfeng@whu.edu.cn

  • Received Date: May 17, 2018
  • Published Date: December 04, 2018
  • Impervious rate is an important indicator to evaluate the urban ecological environment. Currently, there is only 1 km and 30 m resolution of impervious surface thematic information in the global scope, which cannot meet the needs of urban scale hydrological modeling, sponge city planning and construction. In this paper, an impervious surface extraction model incorporated spectral and texture information is proposed, and a new method based on deep learning is implemented to estimate imper-vious surface information. In addition the software for extracting and monitoring of impervious surface is also developed. Based on multi-source high spatial resolution imagery, impervious surface map with 2 m spatial resolution in mainland China including 31 provinces (municipalities, autonomous regions) is accomplished, just supports the high resolution data to research and monitor sponge and ecological cities.
  • [1]
    曹丽琴, 李平湘, 张良培, 等. Fuzzy ARTMAP算法在城市不透水面估算中的应用研究[J].武汉大学学报·信息科学版, 2012, 37(10):1236-1239 http://ch.whu.edu.cn/CN/abstract/abstract361.shtml

    Cao Liqin, Li Pingxiang, Zhang Liangpei, et al. Estimating Impervious Surfaces Using the Fuzzy ARTMAP[J]. Geomatics and Information Science of Wuhan University, 2012, 37(10):1236-1239 http://ch.whu.edu.cn/CN/abstract/abstract361.shtml
    [2]
    Luo Hui, Liu Chong, Wu Chen, et al. Urban Change Detection Based on Dempster-Shafer Theory for Multitemporal Very High-Resolution Imagery[J]. Remote Sensing, 2018, DOI: 10.3390/rs10070988
    [3]
    唐菲, 徐涵秋.不同传感器线性光谱分解反演不透水面的对比——以Landsat ETM+和EO-1 ALI为例[J].武汉大学学报·信息科学版, 2013, 38(9):1068-1072 http://ch.whu.edu.cn/CN/abstract/abstract2747.shtml

    Tang Fei, Xu Hanqiu. A LSMA-based Comparison of the Performances in Retrieving Impervious Surface Between Landsat ETM+and EO-1 ALI[J]. Geomatics and Information Science of Wuhan University, 2013, 38(9):1068-1072 http://ch.whu.edu.cn/CN/abstract/abstract2747.shtml
    [4]
    Qiao K, Zhu W, Hu D, et al. Examining the Distribution and Dynamics of Impervious Surface in Different Function Zones in Beijing[J]. Journal of Geographical Sciences, 2018, 28(5):669-684 doi: 10.1007/s11442-018-1498-5
    [5]
    董金玮, 匡文慧, 刘纪远.遥感大数据支持下的全球土地覆盖连续动态监测[J].中国科学:地球科学, 2018, 48(2):259-260 http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201802010.htm

    Dong Jinwei, Kuang Wenhui, Liu Jiyuan. Continuous Land Cover Change Monitoring in the Remote Sensing Big Data Era[J]. Science China:Earth Sciences, 2018, 48(2):259-260 http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201802010.htm
    [6]
    杨永可.大尺度土地覆盖数据集遥感评价研究[D].南京: 南京大学, 2014 http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2942684

    Yang Yongke.Accuracy Assessment of Large Scale Land Cover Datasets[D]. Nanjing: Nanjing University, 2014 http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2942684
    [7]
    Wickham J, Stehman S V, Gass L, et al. Thematic Accuracy Assessment of the 2011 National Land Cover Database (NLCD)[J]. Remote Sensing of Environment, 2017, 191:328-341 doi: 10.1016/j.rse.2016.12.026
    [8]
    陈军, 陈晋, 宫鹏, 等.全球地表覆盖高分辨率遥感制图[J].地理信息世界, 2011(2):12-14 doi: 10.3969/j.issn.1672-1586.2011.02.002

    Chen Jun, Chen Jin, Gong Peng, et al. Higher Reso-lution Global Land Cover Mapping[J]. Geomatics World, 2011(2):12-14 doi: 10.3969/j.issn.1672-1586.2011.02.002
    [9]
    Jamil A, Bayram B. Tree Species Extraction and Land Use/Cover Classification from High-Resolution Digital Orthophoto Maps[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(1):89-94 doi: 10.1109/JSTARS.2017.2756864
    [10]
    杨永可, 肖鹏峰, 冯学智, 等.大尺度土地覆盖数据集在中国及周边区域的精度评价[J].遥感学报, 2014, 18(2):453-475 http://d.old.wanfangdata.com.cn/Periodical/ygxb201402014

    Yang Yongke, Xiao Pengfeng, Feng Xuezhi, et al. Comparison and Assessment of Large Scale Land Cover Datasets in China and Adjacent Regions[J]. Journal of Remote Sensing, 2014, 18(2):453-475 http://d.old.wanfangdata.com.cn/Periodical/ygxb201402014
    [11]
    陈洪, 陶超, 邹峥嵘, 等.一种新的高分辨率遥感影像城区提取方法[J].武汉大学学报·信息科学版, 2013, 38(9):1063-1067 http://ch.whu.edu.cn/CN/abstract/abstract2752.shtml

    Chen Hong, Tao Chao, Zou Zhengrong, et al. Automatic Urban Area Extraction Using a Gabor Filter and High-Resolution Remote Sensing Imagery[J]. Geomatics and Information Science of Wuhan University, 2013, 38(9):1063-1067 http://ch.whu.edu.cn/CN/abstract/abstract2752.shtml
    [12]
    Luo Hui, Wang Le, Wu Chen, et al. An Improved Method for Impervious Surface Mapping Incorporating LiDAR Data and High-Resolution Imagery at Different Acquisition Times[J]. Remote Sensing, 2018, DOI: 10.3990/rs10091349
    [13]
    王春艳, 刘佳新, 徐爱功, 等.一种新的高分辨率遥感影像模糊监督分类方法[J].武汉大学学报·信息科学版, 2018, 43(6):922-929 http://ch.whu.edu.cn/CN/abstract/abstract6133.shtml

    Wang Chunyan, Liu Jiaxin, Xu Aigong, et al. A New Method of Fuzzy Supervised Classification of High Resolution Remote Sensing Image[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6):922-929 http://ch.whu.edu.cn/CN/abstract/abstract6133.shtml
    [14]
    Luo H, Wang L, Shao Z, et al. Development of a Multi-scale Object-Based Shadow Detection Method for High Spatial Resolution Image[J]. Remote Sensing Letters, 2015, 6(1):59-68 doi: 10.1080/2150704X.2014.1001079
    [15]
    Liu J, Li P, Wang X. A New Segmentation Method for very High Resolution Imagery Using Spectral and Morphological Information[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 101:145-162 doi: 10.1016/j.isprsjprs.2014.11.009
    [16]
    Pontius J, Hanavan R P, Hallett R A, et al. HighSpatial Resolution Spectral Unmixing for Mapping Ash Species Across a Complex Urban Environment[J]. Remote Sensing of Environment, 2017, 199:360-369 doi: 10.1016/j.rse.2017.07.027
    [17]
    徐涵秋.一种快速提取不透水面的新型遥感指数[J].武汉大学学报·信息科学版, 2008, 33(11):1150-1153 http://ch.whu.edu.cn/CN/abstract/abstract1750.shtml

    Xu Hanqiu. A New Remote Sensing Index for Fastly Extracting Impervious Surface Information[J]. Geomatics and Information Science of Wuhan University, 2008, 33(11):1150-1153 http://ch.whu.edu.cn/CN/abstract/abstract1750.shtml
    [18]
    Zhao W, Du S, Wang Q, et al. Contextually Guided Very-High-Resolution Imagery Classification with Semantic Segments[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 132:48-60 doi: 10.1016/j.isprsjprs.2017.08.011
    [19]
    Huang X, Wen D, Li J, et al. Multi-level Monito-ring of Subtle Urban Changes for the Megacities of China Using High-Resolution Multi-view Satellite Imagery[J]. Remote Sensing of Environment, 2017, 196:56-75 doi: 10.1016/j.rse.2017.05.001
    [20]
    李德仁, 罗晖, 邵振峰.遥感技术在不透水层提取中的应用与展望[J].武汉大学学报·信息科学版, 2016, 41(5):569-577 http://ch.whu.edu.cn/CN/abstract/abstract5433.shtml

    Li Deren, Luo Hui, Shao Zhenfeng. Application and Prospect of Remote Sensing Technology in Imper-vious Surface Extraction[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5):569-577 http://ch.whu.edu.cn/CN/abstract/abstract5433.shtml
  • Related Articles

    [1]ZHOU Fangbin, ZOU Lianhua, LIU Xuejun, MENG Fanyi. Micro Landform Classification Method of Grid DEM Based on Convolutional Neural Network[J]. Geomatics and Information Science of Wuhan University, 2021, 46(8): 1186-1193. DOI: 10.13203/j.whugis20190311
    [2]ZOU Kun, WO Yan, XU Xiang. A Feature Significance-Based Method to Extract Terrain Feature Lines[J]. Geomatics and Information Science of Wuhan University, 2018, 43(3): 342-348. DOI: 10.13203/j.whugis20150373
    [3]CAO Zhenzhou, LI Manchun, CHENG Liang, CHEN Zhenjie. Progressive Transmission of Vector Curve Data over InternetCAO ZhenzhouLI Manchun[J]. Geomatics and Information Science of Wuhan University, 2013, 38(4): 475-479.
    [4]ZHENG Shunyi, HU Hualiang, HUANG Rongyong, JI Zheng. Realtime Ranging of Power Transmission Line[J]. Geomatics and Information Science of Wuhan University, 2011, 36(6): 704-707.
    [5]AI Bo, AI Tinghua, TANG Xinming. Progressive Transmission of River Network[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 51-54.
    [6]LIU Yan, LIU Jingnan, LI Tao, XIA Ye. Monitoring Damage of State Grid Transmission Tower in Bad Weather by High-Resolution SAR Satellites[J]. Geomatics and Information Science of Wuhan University, 2009, 34(11): 1354-1358.
    [7]YIN Hui, ZHANG Xiaohong, ZHANG Xiaowu, LIU Xingfa. Interference Analysis to Aerial Flight Caused by UHV Lines Using Airborne GPS[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7): 774-777.
    [8]WANG Cheng, HU Peng, LIU Xiaohang, LI Yunxiang. Automated Classification of Martian Landforms Based on Digital Terrain Analysis(DTA) Technology[J]. Geomatics and Information Science of Wuhan University, 2009, 34(4): 483-487.
    [9]ZHENG Jingjing, FANG Jinyun, HAN Chengde. Progressive Transmission Method of DEM Data Based on JPEG2000 Lossless-Compression[J]. Geomatics and Information Science of Wuhan University, 2009, 34(4): 395-399.
    [10]WANG Wei, DU Daosheng, XIONG Hanjiang, ZHONG Jing. 3D Modeling and Data Organization of Power Transmission[J]. Geomatics and Information Science of Wuhan University, 2005, 30(11): 986-990.
  • Cited by

    Periodical cited type(7)

    1. 邱龙. 基于无人机测绘图像的大面积地形变化特征提取方法. 北京测绘. 2024(06): 930-935 .
    2. 邓颖,蒋兴良,张志劲,曾蕴睿,马龙飞. 基于DEM分析的输电线路覆冰微地形分类识别及验证方法. 高电压技术. 2024(11): 4971-4980 .
    3. 巩鑫龙,田瑞,王孟. 220?kV正兰甲线所在微地形区域风场特性研究. 电力安全技术. 2024(11): 47-51 .
    4. 董慎学,石峰,刘刚,王有威,徐兆国. 垭口地形对输电线路风场分布特性影响分析. 重庆理工大学学报(自然科学). 2023(06): 340-346 .
    5. 吴建蓉,文屹,张啟黎,何锦强,张厚荣,龚博. 基于GIS的易覆冰微地形分类提取算法与三维应用. 高电压技术. 2023(S1): 1-5 .
    6. 周访滨,钟绍平,朱衍哲,杨自强,马国伟. 顾及爆燃地形特征的峡谷分级提取方法. 测绘科学. 2023(09): 89-98 .
    7. 胡京,邓颖,蒋兴良,曾蕴睿. 输电线路覆冰垭口微地形的特征提取与识别方法. 中国电力. 2022(08): 135-142 .

    Other cited types(0)

Catalog

    Article views PDF downloads Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return