LIU Lilong, CHEN Yutian, LI Junyu, TIAN Xiangyu, HE Chaoshuang. Short-term Prediction and Applicability Analysis of Regional Ionospheric Total Electron Content in Active Period[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1757-1764. DOI: 10.13203/j.whugis20180145
Citation: LIU Lilong, CHEN Yutian, LI Junyu, TIAN Xiangyu, HE Chaoshuang. Short-term Prediction and Applicability Analysis of Regional Ionospheric Total Electron Content in Active Period[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1757-1764. DOI: 10.13203/j.whugis20180145

Short-term Prediction and Applicability Analysis of Regional Ionospheric Total Electron Content in Active Period

Funds: 

The Foundation of Guangxi Bagui Scholars Funded Project Team; the National Natural Science Foundation of China 41664002

The Foundation of Guangxi Bagui Scholars Funded Project Team; the National Natural Science Foundation of China 41704027

Fourdation of Key Laboratory of Spatial Information and Mapping of Guangxi 16-380-25-27

Guangxi University (To Enhance the Ability of Youth Education Hall Project) Scientific Research Project KY2016YB189

Guangxi University (To Enhance the Ability of Youth Education Hall Project) Scientific Research Project 2017KY0267

More Information
  • Author Bio:

    LIU Lilong, PhD, professor, specializes in the research of GNSS technology and application. E-mail:hn_liulilong@163.com

  • Corresponding author:

    LI Junyu, PhD candidate. E-mail: lijunyu@glut.edu.cn

  • Received Date: November 02, 2018
  • Published Date: December 04, 2019
  • In the solar active period, the earth's magnetic field is easily affected by the high energy particles of the solar wind, which makes the total electron content of the ionosphere abnormally disturbed, and its non-stationary and nonlinear characteristics are obviously enhanced compared to the calm period. Using the measured data from multiple stations in the 2011 region and the GIM (global ionosphere model) published by the IGS (International GNSS Service) to perform point-by-point modeling, the db4 wavelet basis is used to decompose the sample sequence, and the time series model is used to forecast each component and forecast. Each component is reconstructed so that the ARIMA (auto regressive integrated moving average) model can be improved. The prediction accuracy and applicability of the improved model are evaluated by analyzing the residual ratio of the ARIMA model and the improved model and the distribution of the root mean square error in the experimental region. The results show that the residual error of the improved model and the root mean square error in the experimental area are reduced compared with the ARIMA model, and the improved model can greatly weaken the peak value of the root mean square error in the area.
  • [1]
    袁运斌.基于GPS的电离层监测及延迟改正理论与方法的研究[D].武汉: 中国科学院测量与地球物理研究所, 2002 http://cdmd.cnki.com.cn/Article/CDMD-80057-2003040660.htm

    Yuan Yunbin. Study on Theories and Methods of Correcting Ionospheric Delay and Monitoring Ionosphere Based on GPS[D]. Wuhan: Institute of Geodesy and Geophysics, Chinese Academy of Sciences, 2002 http://cdmd.cnki.com.cn/Article/CDMD-80057-2003040660.htm
    [2]
    聂文锋, 胡伍生, 潘树国, 等.利用GPS双频数据进行区域电离层TEC提取[J].武汉大学学报·信息科学版, 2014, 39(9): 1 022-1 027 http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb201409003

    Nie Wenfeng, Hu Wusheng, Pan Shuguo, et al. Extraction of Regional Ionospheric TEC from GPS Dual Observation[J]. Geomatics and Information Science of Wuhan University, 2014, 39(9): 1 022-1 027 http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb201409003
    [3]
    章红平.基于地基GPS的中国区域电离层监测与延迟改正研究[D].上海: 中国科学院上海天文台, 2006 http://cdmd.cnki.com.cn/Article/CDMD-80022-2006109504.htm

    Zhang Hongping. Study on Ionospheric Monitoring and Delay Correction in China Based on Ground-based GPS[D]. Shanghai: Shanghai Astronomical Observatory, Chinese Academy of Sciences, 2006 http://cdmd.cnki.com.cn/Article/CDMD-80022-2006109504.htm
    [4]
    王宁波, 袁运斌, 李子申, 等.不同NeQuick电离层模型参数的应用精度分析[J].测绘学报, 2017, 46(4): 421-429 http://d.old.wanfangdata.com.cn/Periodical/chxb201704004

    Wang Ningbo, Yuan Yunbin, Li Zishen, et al. Performance Analysis of Different NeQuick Ionospheric Model Parameters[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(4): 421-429 http://d.old.wanfangdata.com.cn/Periodical/chxb201704004
    [5]
    匡翠林, 金蕾.精密单点定位的高阶电离层误差改正研究[J].武汉大学学报·信息科学版, 2013, 38(8): 888-891 http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb201308002

    Kuang Cuilin, Jin Lei. Higher-order Ionospheric Error Correction for Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2013, 38(8): 888-891 http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb201308002
    [6]
    霍星亮, 袁运斌, 欧吉坤, 等.顾及电离层变化的层析反演新算法[J].地球物理学报, 2016, 59(7): 2 393-2 401 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201607006

    Huo Xingliang, Yuan Yunbin, Ou Jikun, et al. A New Ionospheric Tomographic Algorithm Taking into Account the Variation of the Ionosphere[J]. Chinese Journal of Geophysics, 2016, 59(7): 2 393-2 401 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201607006
    [7]
    鲍亚东, 刘长建, 柴洪洲.小波分解改进电离层VTEC时间序列预报模型[J].大地测量与地球动力学, 2015, 35(5): 784-787 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dkxbydz201505013

    Bao Yadong, Liu Changjian, Chai Hongzhou. Time Series Prediction Model of Ionospheric VTEC Improved by Wavelet Decomposition[J]. Journal of Geodesy and Geodynamics, 2015, 35(5): 784-787 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dkxbydz201505013
    [8]
    孟泱, 王泽民, 鄂栋臣.基于GPS数据的地震前电离层TEC异常研究[J].武汉大学学报·信息科学版, 2008, 33(1): 81-84 http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb200801019

    Meng Yang, Wang Zemin, E Dongchen. Ionopsheric TEC Anomalies of Pre-Earthquake Based on GPS Data[J]. Geomatics and Information Science of Wuhan University, 2008, 33(1): 81-84 http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb200801019
    [9]
    李志刚, 程宗颐, 冯初刚, 等.电离层预报模型研究[J].地球物理学报, 2007, 50(2): 327-337 doi: 10.3321/j.issn:0001-5733.2007.02.001

    Li Zhigang, Cheng Zongyi, Feng Chugang, et al. A Study of Prediction Models for Ionosphere[J]. Chinese Journal of Geophysics, 2007, 50(2): 327-337 doi: 10.3321/j.issn:0001-5733.2007.02.001
    [10]
    李秀海, 郭达志.应用半参数AR模型的电离层TEC建模与预测[J].测绘科学, 2011, 36(2): 149-151 http://d.old.wanfangdata.com.cn/Periodical/chkx201102050

    Li Xiuhai, Guo Dazhi. Prediction of Ionospheric Total Electron Content Based on Semiparametric Autoregressive Model[J]. Science of Surveying and Mapping, 2011, 36(2): 149-151 http://d.old.wanfangdata.com.cn/Periodical/chkx201102050
    [11]
    陈鹏, 姚宜斌, 吴寒.利用时间序列分析预报电离层TEC[J].武汉大学学报·信息科学版, 2011, 36(3): 267-270 http://www.cnki.com.cn/Article/CJFDTotal-WHCH201103005.htm

    Chen Peng, Yao Yibin, Wu Han. TEC Prediction of Ionosphere Based on Time Series Analysis[J]. Geomatics and Information Science of Wuhan University, 2011, 36(3): 267-270 http://www.cnki.com.cn/Article/CJFDTotal-WHCH201103005.htm
    [12]
    汤俊, 姚宜斌, 陈鹏, 等.利用EMD方法改进电离层TEC预报模型[J].武汉大学学报·信息科学版, 2013, 38(4): 408-411 http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb201304008

    Tang Jun, Yao Yibin, Chen Peng, et al. Prediction Models of Ionospheric TEC Improved by EMD Method[J]. Geomatics and Information Science of Wuhan University, 2013, 38(4): 408-411 http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb201304008
    [13]
    杨哲, 宋淑丽, 薛军琛, 等. Klobuchar模型和NeQuick模型在中国地区的精度评估[J].武汉大学学报·信息科学版, 2012, 37(6): 704-708 http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb201206019

    Yang Zhe, Song Shuli, Xue Junchen, et al. Accuracy Assessment of Klobuchar Model and NeQuick Model in China[J]. Geomatics and Information Science of Wuhan University, 2012, 37(6): 704-708 http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb201206019
    [14]
    陈亚楠, 徐继生.顶部电离层离子密度经度结构的特征及其随季节、太阳活动和倾角的变化[J].地球物理学报, 2015, 58(6): 1 843-1 852 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201506001

    Chen Yanan, Xu Jisheng. Longitudinal Structure of Plasma Density and Its Variations with Season Solar Activity and Dip in the Topside Ionosphere[J]. Chinese Journal of Geophysics, 2015, 58(6): 1 843-1 852 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201506001
    [15]
    姚宜斌, 张顺, 孔建. 2011年电离层和太阳活动指数的准21.5天振荡分析[J].测绘学报, 2017, 46(1): 9-15 http://d.old.wanfangdata.com.cn/Periodical/chxb201701002

    Yao Yibin, Zhang Shun, Kong Jian. Analysis of 21.5 d Period in Ionospheric and Solar Indices During 2011[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(1): 9-15 http://d.old.wanfangdata.com.cn/Periodical/chxb201701002
    [16]
    张小红, 任晓东, 吴风波, 等.自回归移动平均模型的电离层总电子含量短期预报[J].测绘学报, 2014, 43(2): 118-124 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chxb201402010

    Zhang Xiaohong, Ren Xiaodong, Wu Fengbo, et al. Short-term TEC Prediction of Ionosphere Based on ARIMA Model[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(2): 118-124 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chxb201402010
    [17]
    刘立龙, 陈军, 黄良珂, 等.基于小波-ARIMA电离层短期总电子含量预报[J].桂林理工大学学报, 2016, 36(2): 294-299 doi: 10.3969/j.issn.1674-9057.2016.02.016

    Liu Lilong, Chen Jun, Huang Liangke, et al. TEC Forecast of Short-term Ionosphere Based on Wavelet-ARIMA[J]. Journal of Guilin University of Technology, 2016, 36(2): 294-299 doi: 10.3969/j.issn.1674-9057.2016.02.016
    [18]
    徐继生, 朱劼, 程光晖. 2004年11月强磁暴期间武汉电离层TEC的响应和振幅闪烁特征的GPS观测[J].地球物理学报, 2006, 49(4): 950-956 doi: 10.3321/j.issn:0001-5733.2006.04.004

    Xu Jisheng, Zhu Jie, Cheng Guanghui. GPS Observations of Ionospheric Effects of the Major Storm of Nov.7-10, 2004[J]. Chinese Journal of Geophysics, 2006, 49(4): 950-956 doi: 10.3321/j.issn:0001-5733.2006.04.004
  • Cited by

    Periodical cited type(6)

    1. 韦律权,黎峻宇,刘立龙,黄良珂,杨芸珍,魏朋志. 组合式深度学习的电离层TEC短期预报模型. 测绘科学技术学报. 2024(04): 369-374 .
    2. 胡文权. 基于RBF神经网络的改进模型在电离层TEC预报中的应用. 测绘与空间地理信息. 2023(08): 164-167 .
    3. 王建敏,唐彦,吕楠,李特. 组合模型的电离层总电子短期预报研究. 测绘科学. 2022(04): 34-43+67 .
    4. 田睿,董绪荣. 小波分解与Prophet框架融合的电离层VTEC预报模型. 系统工程与电子技术. 2021(03): 610-622 .
    5. 陈慕亚,刘康,张红娟,张越. 基于太白山南坡巴山冷杉NPP动态变化的时间序列模型预测效果对比. 植物科学学报. 2020(03): 323-334 .
    6. 姜益昊,陶钧,杨超,龙宇浩,赵齐乐. GNSS基准站原始观测数据的一种虚拟化算法. 测绘地理信息. 2020(05): 29-34 .

    Other cited types(8)

Catalog

    Article views (1588) PDF downloads (165) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return