武汉市出租车轨迹二氧化碳排放的时空模式分析

贾涛, 李琦, 马楚, 李雨芊

贾涛, 李琦, 马楚, 李雨芊. 武汉市出租车轨迹二氧化碳排放的时空模式分析[J]. 武汉大学学报 ( 信息科学版), 2019, 44(8): 1115-1123. DOI: 10.13203/j.whugis20170334
引用本文: 贾涛, 李琦, 马楚, 李雨芊. 武汉市出租车轨迹二氧化碳排放的时空模式分析[J]. 武汉大学学报 ( 信息科学版), 2019, 44(8): 1115-1123. DOI: 10.13203/j.whugis20170334
JIA Tao, LI Qi, MA Chu, LI Yuqian. Computing the CO2 Emissions of Taxi Trajectories and Exploring Their Spatiotemporal Patterns in Wuhan City[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1115-1123. DOI: 10.13203/j.whugis20170334
Citation: JIA Tao, LI Qi, MA Chu, LI Yuqian. Computing the CO2 Emissions of Taxi Trajectories and Exploring Their Spatiotemporal Patterns in Wuhan City[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1115-1123. DOI: 10.13203/j.whugis20170334

武汉市出租车轨迹二氧化碳排放的时空模式分析

基金项目: 

国家自然科学基金 41401453

详细信息
    作者简介:

    贾涛, 博士, 副教授, 主要从事地理信息系统及科学、时空轨迹数据分析与挖掘、复杂网络分析与建模以及人类动力学研究。tao.jia@whu.edu.cn

    通讯作者:

    马楚, 硕士, 工程师。machu0123@163.com

  • 中图分类号: P208

Computing the CO2 Emissions of Taxi Trajectories and Exploring Their Spatiotemporal Patterns in Wuhan City

Funds: 

The National Natural Science Foundation of China 41401453

More Information
    Author Bio:

    JIA Tao, PhD, associate professor, his research interest is focused on Geographical Information System or Science in general, but with a specification on the spatiotemporal trajectory data analysis and mining, complex networks analysis and modeling, and human dynamics. E-mail:tao.jia@whu.edu.cn

    Corresponding author:

    MA Chu, master, engineer. E-mail: machu0123@163.com

  • 摘要: 车辆尾气是道路交通二氧化碳(CO2)排放的重要来源,目前的研究主要集中在区域CO2排放清单的计算和分析上,鲜有从微观层面上进行CO2排放的反演分析。采用微观尾气排放模型对出租车行程轨迹的CO2排放量进行定量反演,进而从点、线、面3个粒度对武汉市出租车行程轨迹CO2排放的时空模式进行分析。研究结果表明,利用出租车轨迹可以有效地反演出租车CO2排放量,并发现其在不同日期和时段具有明显的规律性。通过时空聚类技术发现了点粒度下的出租车CO2排放的类簇数目存在一定的时空变化规律,采用数据场模型展示了线粒度下的道路线段出租车CO2排放强度存在明显的时空分布规律,利用时空自相关技术揭示了面粒度下的区域出租车CO2排放量具有较高的时空正相关性。研究成果可以为城市减排措施制定等提供辅助支持。
    Abstract: The intensive usage of vehicles has led to many urban problems including the traffic jams and the environmental pollutions. To handle these problems, most previous studies have used macro-based models to estimate and analyze the CO2 emission inventories, but very few studies have focused on computing vehicle CO2 emissions using a micro-based model. This paper presents an in-depth study on computing the CO2 emissions from taxi trajectory data and further analyzing their spatiotemporal patterns from three aspects. Taking the Wuhan city as a case study, this paper uses the comprehensive modal emission model to quantitatively compute the CO2 emissions from the taxi trajectory, and statistical results suggest that CO2 emissions of the entire city has experienced a remarkable regularity in times of the day and days of the week. Specifically, the spatiotemporal patterns of CO2 emissions from taxi trajectories are analyzed from three different aspects. Firstly, a spatial clustering algorithm is used to aggregate the taxi trajectory points with high CO2 emissions, and the number of clusters displayed a regular change pattern. For example, the cluster number is gradually increased from workdays to weekends or holidays and from normal time period to peak time period in one day. Secondly, the data field model is used to allocate the CO2 emissions of taxi trajectory to the individual streets, and the emission from street network exhibited a remarkable distribution in space and time. For instance, streets with high CO2 emission tend to appear in the morning peak time period of workdays and evening peak time period of weekends or holidays, and they are spatially adjacent to the universities, railway stations, or central business districts. Thirdly, a spatiotemporal autocorrelation technique is adopted to examine the concentration of taxi trajectory emissions in space, and different regions are positively auto-correlated with each other in both times of the day and days of the week. These results can help to the proposal of efficient CO2 emissions reduction strategies, and they can provide guidance for taxis management, low-carbon traveling, and so on.
  • 图  1   出租车轨迹示意图

    Figure  1.   Sketch Map of Taxi Trajectory

    图  2   轨迹数据与路网匹配

    Figure  2.   Matching the Trajectory Data to the Road Network

    图  3   出租车行程轨迹的CO2单日排放总量

    Figure  3.   Total Amount of Carbon Dioxide Emissions from Taxis Trajectory per Day

    图  4   周末、工作日、国外的圣瓦伦丁节出租车行程轨迹的CO2小时排放量

    Figure  4.   Carbon Dioxide Emissions from Weekend, Working Day and the Valentine's Day

    图  5   典型时段出租车行程轨迹点CO2排放量的空间聚类图

    Figure  5.   Clusters of Carbon Dioxide Emission of Taxi Trajectory Points in Typical Periods

    图  6   典型时段道路线段的出租车CO2排放强度空间分布图

    Figure  6.   Spatial distribution of Carbon Dioxide Emission from Taxi Trajectory Data of Road Segments in Typical Periods

    图  7   不同日期格网单元出租车CO2排放的局部Moran’s I值

    Figure  7.   Local Moran's I for the Carbon Dioxide Emission of Spatial Grid at Different Dates

    图  8   不同时间段格网单元出租车CO2排放的局部Moran’s I值

    Figure  8.   Local Moran's I for the Carbon Dioxide Emission of Spatial Grid at Different Periods

    表  1   不同日期CO2排放全局Moran’s I值及检验

    Table  1   Overall Moran's I and Its Statistical Test atDifferent Dates

    日期 Moran’s I值 Z检验量 P
    2015-02-01 0.642 3 44.142 0.01
    2015-02-02 0.602 1 28.565 0.01
    2015-02-03 0.610 2 49.124 0.01
    2015-02-04 0.614 5 32.120 0.01
    2015-02-05 0.512 4 18.858 0.01
    2015-02-06 0.541 2 26.356 0.01
    2015-02-07 0.589 2 10.586 0.01
    2015-02-08 0.489 6 16.258 0.01
    2015-02-09 0.358 9 24.223 0.01
    2015-02-10 0.512 4 36.255 0.01
    2015-02-11 0.510 3 42.536 0.01
    2015-02-12 0.448 7 19.255 0.01
    2015-02-13 0.589 6 22.363 0.01
    2015-02-14 0.711 5 34.144 0.01
    2015-02-15 0.682 0 45.356 0.01
    下载: 导出CSV
  • [1]

    Cheng Y H, Chang Y H, Lu I J. Urban Transportation Energy and Carbon Dioxide Emission Reduction Strategies[J]. Applied Energy, 2015, 157:953-973 doi: 10.1016/j.apenergy.2015.01.126

    [2] 张兰怡, 胡喜生, 邱荣祖.机动车尾气污染物排放模型研究综述[J].世界科技研究与发展, 2017(4):355-362 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjkjyjyfz201704006

    Zhang Lanyi, Hu Xisheng, Qiu Rongzu. A Review of Vehicle Exhaust Emission Model[J]. World SciTech R&D, 2017(4):355-362 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjkjyjyfz201704006

    [3]

    EU EEA. COPERT5 Manual[OL]. http://copert.emisia.com,2017

    [4]

    US EPA. Technical Guidance on the Use of MOVES 2010 for Emission Inventory Preparation in State Implementation Plans and Transportation Conformity[OL]. https://www.epa.gov/moves,2009

    [5] 谢荣富, 陈振斌, 邓小康, 等.基于MOVES2014a的海口市机动车污染物排放特征及分担率研究[J].海南大学学报·自然科学版, 2017, 35(3):282-289 http://d.old.wanfangdata.com.cn/Periodical/hainandxxb201703012

    Xie Rongfu, Chen Zhenbin, Deng Xiaokang, et al. Study on Emission Characteristics and Sharing Rate of Vehicle Pollutants in Haikou Based on MOVES2014a[J]. Natural Science Journal of Hainan University, 2017, 35(3):282-289 http://d.old.wanfangdata.com.cn/Periodical/hainandxxb201703012

    [6] 王海鲲, 陈长虹, 黄成, 等.应用IVE模型计算上海市机动车污染物排放[J].环境科学学报, 2006, 26(1):1-9 http://d.old.wanfangdata.com.cn/Periodical/hjkxxb200601001

    Wang Haikun, Chen Changhong, Huang Cheng, et al. Using IVE Model to Calculate the Emission of Vehicle Pollutants in Shanghai[J]. Journal of Environmental Science, 2006, 26(1):1-9 http://d.old.wanfangdata.com.cn/Periodical/hjkxxb200601001

    [7]

    Cai H, Xie S. Estimation of Vehicular Emission Inventories in China from 1980 to 2005[J]. Atmospheric Environment, 2007, 41(39):8963-8979 doi: 10.1016/j.atmosenv.2007.08.019

    [8]

    Liu Y, Liao W, Li L, et al. Vehicle Emission Trends in China's Guangdong Province from 1994 to 2014[J]. Science of the Total Environment, 2017, 586:512-521 doi: 10.1016/j.scitotenv.2017.01.215

    [9] 于洋, 陈才.中国二氧化碳净排放的时空特性分析[J].地理科学, 2013, 33(10):1173-1179 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkx201310003

    Yu Yang, Chen Cai. Analysis of Time and Space Characteristics of China's Net Carbon Dioxide Emissions[J]. Geographical Sciences, 2013, 33(10):1173-1179 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkx201310003

    [10]

    Zheng B, Zhang Q, Borken-Kleefeld J, et al. How will Greenhouse Gas Emissions from Motor Vehicles be Constrained in China Around 2030?[J]. Applied Energy, 2015, 156:230-240 doi: 10.1016/j.apenergy.2015.07.018

    [11] 单杰, 秦昆, 黄长青, 等.众源地理数据处理与分析方法探讨[J].武汉大学学报·信息科学版, 2014, 39(4):390-396 http://ch.whu.edu.cn/CN/abstract/abstract2966.shtml

    Shan Jie, Qin Kun, Huang Changqing, et al. Methods of Crowd Sourcing Geographic Data Processing and Analysis[J]. Geomatics and Information Science of Wuhan University, 2014, 39(4):390-396 http://ch.whu.edu.cn/CN/abstract/abstract2966.shtml

    [12]

    Sun F, Zhang X, Tang L, et al. Temporal and Spatial Distribution of High Efficiency Passengers Based on GPS Trajectory Big Data[J]. Journal of GeoInformation Science, 2015, 5(4):93-101 http://d.old.wanfangdata.com.cn/Periodical/dqxxkx201503010

    [13]

    Mazimpaka J D. Trajectory Data Mining:A Review of Methods and Applications[J]. Journal of Spatial Information Science, 2016, 13:61-99

    [14]

    Taylor J, Zhou X, Rouphail N M, et al. Method for Investigating Intradriver Heterogeneity Using Vehicle Trajectory Data:A Dynamic Time Warping Approach[J]. Transportation Research Part B:Methodological, 2015, 73:59-80 doi: 10.1016/j.trb.2014.12.009

    [15]

    Feng Z, Zhu Y. A Survey on Trajectory Data Mining:Techniques and Applications[J]. IEEE Access, 2017, 4:2056-2067 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_bfafc203b2231f0438290f3bd6dd5a69

    [16] 雷伟.城市道路交通排放的仿真优化研究[D].武汉: 武汉理工大学, 2011 http://cdmd.cnki.com.cn/article/cdmd-10497-1011197053.htm

    Lei Wei. Research on Simulation and Optimization of Urban Road Traffic Emission[D]. Wuhan: Wuhan University of Technology, 2011 http://cdmd.cnki.com.cn/article/cdmd-10497-1011197053.htm

    [17] 吴超仲, 徐成伟, 严新平.基于优化速度模型的城市交通微观尾气排放模型[J].武汉理工大学学报(交通科学与工程版), 2008, 32(2):203-205 doi: 10.3963/j.issn.2095-3844.2008.02.004

    Wu Chaozhong, Xu Chengwei, Yan Xinping. Micro Exhaust Emission Model of Urban Traffic Based on Optimal Velocity Model[J]. Journal of Wuhan University of Technology(Transportation Science & Engineering), 2008, 32(2):203-205 doi: 10.3963/j.issn.2095-3844.2008.02.004

    [18] 陈琨, 于雷.用于交通控制策略评估的微观交通尾气模拟与实例分析[J].交通运输系统工程与信息, 2007, 7(1):93-100 doi: 10.3969/j.issn.1009-6744.2007.01.013

    Chen Kun, Yu Lei. Simulation and Example Analysis of Microscopic Traffic Tail Gas for Traffic Control Strategy Evaluation[J]. Journal of Transportation Systems Engineering and Information Technology, 2007, 7(1):93-100 doi: 10.3969/j.issn.1009-6744.2007.01.013

    [19]

    Wang Z, Chen F, Fujiyama T. Carbon Emission from Urban Passenger Transportation in Beijing[J]. Transportation Research Part D:Transport & Environment, 2015, 41:217-227

    [20] 宁晓菊, 秦耀辰, 鲁丰先.郑州城市居民交通CO2排放研究[D].开封: 河南大学, 2013 http://cdmd.cnki.com.cn/Article/CDMD-10475-1013349771.htm

    Ning Xiaoju, Qin Yaochen, Lu Fengxian. Study on Traffic CO2 Emission of Urban Residents in Zhengzhou[D]. Kaifeng: Henan University, 2013 http://cdmd.cnki.com.cn/Article/CDMD-10475-1013349771.htm

    [21]

    Jia T, Carling K, Hakansson J. Trips and Their CO2 Emissions to and from a Shopping Center[J]. Journal of Transport Geography, 2013, 33:135-145 doi: 10.1016/j.jtrangeo.2013.09.018

    [22]

    Luo X, Dong L, Dou Y, et al. Analysis on Spatial Temporal Features of Taxis'Emissions from Big Data Informed Travel Patterns:A Case of Shanghai, China[J]. Journal of Cleaner Production, 2017, 142(2):926-935

    [23] 徐成伟, 吴超仲, 初秀民, 等.基于CMEM模型的武汉市轻型机动车平均排放因子研究[J].交通与计算机, 2008, 26(4):185-188 http://d.old.wanfangdata.com.cn/Periodical/jtyjsj200804049

    Xu Chengwei, Wu Chaozhong, Chu Xiumin, et al. Study on the Average Emission Factor of Light Motor Vehicle in Wuhan Based on CMEM Model[J]. Traffic and Computer, 2008, 26(4):185-188 http://d.old.wanfangdata.com.cn/Periodical/jtyjsj200804049

    [24] 张涛, 张欣.三次样条插值在小波去噪中的应用[J].计算机应用与软件, 2016, 33(8):88-90 doi: 10.3969/j.issn.1000-386x.2016.08.019

    Zhang Tao, Zhang Xin. The Application of Three Cubic Spline Interpolation in Wavelet Denoising[J]. Computer Applications and Software, 2016, 33(8):88-90 doi: 10.3969/j.issn.1000-386x.2016.08.019

    [25]

    Li Q, Jia T. Correction of Measured Taxicab Exhaust Emission Data Based on CMEM Modle[C]. International Conference on Spatial Data Mining, Wuhan, 2017

    [26] 荣秋生, 颜君彪, 郭国强.基于DBSCAN聚类算法的研究与实现[J].计算机应用, 2004, 24(4):45-46 http://d.old.wanfangdata.com.cn/Periodical/jsjyy200404015

    Rong Qiusheng, Yan Junbiao, Guo Guoqiang. Research and Implementation Based on DBSCAN Clustering Algorithm[J]. Computer Application, 2004, 24(4):45-46 http://d.old.wanfangdata.com.cn/Periodical/jsjyy200404015

    [27] 周勍, 秦昆, 陈一祥, 等.基于数据场的出租车轨迹热点区域探测方法[J].地理与地理信息科学, 2016, 32(6):51-56 doi: 10.3969/j.issn.1672-0504.2016.06.009

    Zhou Qing, Qin Kun, Chen Yixiang, et al. Detection Method of Hot Spot in Taxi Track Based on Data Field[J]. Geography and Geographic Information Science, 2016, 32(6):51-56 doi: 10.3969/j.issn.1672-0504.2016.06.009

    [28] 付仲良, 杨元维, 高贤君, 等.利用多元Logistic回归进行道路网匹配[J].武汉大学学报·信息科学版, 2016, 41(2):171-177 http://ch.whu.edu.cn/CN/abstract/abstract3451.shtml

    Fu Zhongliang, Yang Yuanwei, Gao Xianjun, et al. Road Network Matching Using Multivariate Regression[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2):171-177 http://ch.whu.edu.cn/CN/abstract/abstract3451.shtml

图(8)  /  表(1)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-22
  • 发布日期:  2019-08-04

目录

    /

    返回文章
    返回