JIANG San, XU Zhihai, ZHANG Feng, LIAO Ruchao, JIANG Wanshou. Solution for Efficient SfM Reconstruction of Oblique UAV Images[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1153-1161. DOI: 10.13203/j.whugis20180030
Citation: JIANG San, XU Zhihai, ZHANG Feng, LIAO Ruchao, JIANG Wanshou. Solution for Efficient SfM Reconstruction of Oblique UAV Images[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1153-1161. DOI: 10.13203/j.whugis20180030

Solution for Efficient SfM Reconstruction of Oblique UAV Images

Funds: 

Key Technology Program of China South Power Grid GDKJQQ20161187

More Information
  • Author Bio:

    JIANG San, PhD, associate professor, specializes in image matching and aerial triangulation. E-mail:jiangsan@cug.edu.cn

  • Corresponding author:

    JIANG Wanshou, PhD, professor. E-mail: jws@whu.edu.cn

  • Received Date: May 25, 2018
  • Published Date: August 04, 2019
  • For the low sparse reconstruction efficiency caused by high resolutions and large volumes of UAV (unmanned aerial vehicle) images, this paper proposes an algorithm for decreasing the number of image pairs and improving the efficiency of outlier removal. Firstly, rough POS (positioning and orientation system) is calculated for each image with the use of GNSS/IMU (Global Navigation Satellite System/inertial measurement unit) data and camera installation angles. Secondly, to reduce image combination complexity, topological connection analysis is used for image pairs selection. Considering high outlier ratios of initial matches, the hierarchical motion consistency constraint (HMCC) is designed to achieve the high efficiency of geometrical verification strategies. The proposed solutions are verified by using four datasets captured with different oblique systems. Results demonstrate that without accuracy sacrifices, the proposed solutions can achieve efficient and reliable reconstruction.
  • [1]
    李德仁, 李明.无人机遥感系统的研究进展与应用前景[J].武汉大学学报·信息科学版, 2014, 39(5):505-513 http://ch.whu.edu.cn/CN/abstract/abstract2977.shtml

    Li Deren, Li Ming. Research Advance and Application Prospect of Unmanned Aerial Vehicle Remote Sensing System[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5):505-513 http://ch.whu.edu.cn/CN/abstract/abstract2977.shtml
    [2]
    李鹏飞, 孙开敏, 李德仁, 等.无人机影像应急并行处理负载均衡方法[J].武汉大学学报·信息科学版, 2018, 43(2):268-274 http://ch.whu.edu.cn/CN/abstract/abstract5979.shtml

    Li Pengfei, Sun Kaimin, Li Deren, et al. A Load Balancing Strategy for Urgent Parallel Processing of UAV Imagery[J]. Geomatics and Information Science of Wuhan University, 2018, 43(2):268-274 http://ch.whu.edu.cn/CN/abstract/abstract5979.shtml
    [3]
    Snavely N, Seitz S M, Szeliski R. Photo Tourism:Exploring Photo Collections in 3D[J]. ACM Transactions on Graphics, 2006, 25(3):835-846 doi: 10.1145/1141911.1141964
    [4]
    Hu H, Zhu Q, Du Z, et al. Reliable Spatial Relationship Constrained Feature Point Matching of Oblique Aerial Images[J]. Photogrammetric Engineering and Remote Sensing, 2015, 81(1):49-58 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=370e024fad8b9b365d3c369e6b4dc8d2
    [5]
    Lu L, Zang Y, Tao P. Geometrical Consistency Voting Strategy for Outlier Detection in Image Matching[J]. Photogrammetric Engineering and Remote Sensing, 2016, 82(7):559-570 doi: 10.14358/PERS.82.7.559
    [6]
    Rupnik E, Nex F, Remondino F. Automatic Orientation of Large Blocks of Oblique Images[C]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Hannover, Germany, 2013
    [7]
    Xu Z, Wu L, Gerke M, et al. Skeletal Camera Network Embedded Structure-from-Motion for 3D Scene Reconstruction from UAV Images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 121:113-127 doi: 10.1016/j.isprsjprs.2016.08.013
    [8]
    Chum O, Matas J. Optimal Randomized RANSAC[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(8):1472-1482 doi: 10.1109/TPAMI.2007.70787
    [9]
    Li X, Larson M, Hanjalic A. Pairwise Geometric Matching for Large-Scale Object Retrieval[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015
    [10]
    Schönberger J L, Price T, Sattler T, et al. A Voteand-Verify Strategy for Fast Spatial Verification in Image Retrieval[C]. Asian Conference on Computer Vision, Taipei, China, 2016
    [11]
    Sattler T, Leibe B, Kobbelt L. SCRAMSAC: Improving RANSAC's Efficiency with a Spatial Consistency Filter[C]. International Conference on Computer Vision, Kyoto, Japan, 2010
    [12]
    Jiang S, Jiang W. On-Board GNSS/IMU Assisted Feature Extraction and Matching for Oblique UAV Images[J]. Remote Sensing, 2017, 9(8):813-833 doi: 10.3390/rs9080813
    [13]
    Graham R L, Heill P. On the History of the Minimum Spanning Tree Problem[J]. Annals of the History of Computing, 1985, 7(1):43-57 doi: 10.1109-MAHC.1985.10011/
    [14]
    Kruskal J B. On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem[J]. Proceedings of the American Mathematical Society, 1956, 7(1):48-50 doi: 10.1090/S0002-9939-1956-0078686-7
    [15]
    Wu C. SiftGPU: A GPU Implementation of Scale Invariant Feature Transform(SIFT)[OL]. https://github.com/pitzer/SiftGPU, 2017
    [16]
    Sun Y, Zhao L, Huang S, et al. L2-SIFT:SIFT Feature Extraction and Matching for Large Images in Large-Scale Aerial Photogrammetry[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 91:1-16 doi: 10.1016/j.isprsjprs.2014.02.001
    [17]
    Sameer A, Keir M. Ceres Solver[OL]. http://ceres-solver.org, 2018
    [18]
    Chum O, Matas J, Kittler J. Locally Optimized RANSAC[C]. Pattern Recognition, the 25th DAGM Symposium, Magdeburg, Germany, 2003
  • Related Articles

    [1]GAO Yang, SHA Hai, CHU Henglin, WANG Mengli. Non-ideality Characteristic Analysis and Receiver Design Constraints Recommendation for BDS B1C and B2a Signals[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4): 587-592. DOI: 10.13203/j.whugis20200568
    [2]LI Jianan, LI Yu, ZHAO Quanhua, JIANG Haonan, HONG Yong. SAR Image Absolute Radiometric Calibration Based on RCS Modeling of Communication Tower[J]. Geomatics and Information Science of Wuhan University, 2021, 46(11): 1746-1755. DOI: 10.13203/j.whugis20210052
    [3]XIE Ping, ZHANG Shuangxi, WANG Haihong, WU Tengfei, CAI Jianfeng. Cross Wavelet Analysis on the Influence of the Three Gorges Dam Impounding on the Reservoir Precipitation[J]. Geomatics and Information Science of Wuhan University, 2019, 44(6): 821-829, 907. DOI: 10.13203/j.whugis20180410
    [4]YANG Jie, CHANG Yonglei, LI Pingxiang, ZHAO Lingli, SHI Lei. Distributed Targets Extraction for SAR Polarimetric Calibration Using Helix Scattering[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2023-2029. DOI: 10.13203/j.whugis20180180
    [5]XU Xiyu, WANG Zhenzhan, XU Ke. Application of Laser Tracking Technology to Absolute Calibration of Space-borne Radar Altimeters[J]. Geomatics and Information Science of Wuhan University, 2017, 42(1): 103-108. DOI: 10.13203/j.whugis20140542
    [6]WENG Yinkan, LI Song, YANG Jinling, YI Hong, WANG Hong, MA Yue. Fast Solution to the RCS of Corner Reflector for the SAR Radiometric Calibration[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1551-1556. DOI: 10.13203/j.whugis20130613
    [7]LIAO Lu, LI Pingxiang, YANG Jie, CHANG Hong. An Improved Method to SAR Polarimetric Calibration Based on Reciprocity Judgement Using Distributed Target[J]. Geomatics and Information Science of Wuhan University, 2015, 40(8): 1042-1047. DOI: 10.13203/j.whugis20140096
    [8]JIN Taoyong, HU Minzhang, JIANG Tao, ZHANG Shoujian. Cross-Calibration and Errors Analysis of Ionosphere Correction in Satellite Altimetry[J]. Geomatics and Information Science of Wuhan University, 2012, 37(6): 658-661.
    [9]WEN Xingping, HU Guangdao, YANG Xiaofeng. Cross Calibration of CBERS-02 CCD Image Based on the Pseudo-invariant Reflectance Targets[J]. Geomatics and Information Science of Wuhan University, 2009, 34(4): 409-413.
    [10]SUN Zhongmiao, XIA Zheren, LI Yingchun. Cross-Coupling Correction for LaCoste&Romberg Airborne Gravimeter[J]. Geomatics and Information Science of Wuhan University, 2006, 31(10): 883-886.
  • Cited by

    Periodical cited type(6)

    1. 严颂华,梅捷,陈永谦,陈璨. 地基GNSS-R公路边坡形变监测实验及误差分析. 武汉大学学报(信息科学版). 2024(01): 100-108 .
    2. 邓垦,周佩元,杜兰,蔡巍. 多系统单频紧组合GNSS-R测高方法. 武汉大学学报(信息科学版). 2024(01): 146-155 .
    3. 侯金华,贺凯飞,高凡,储倜,吴宇. 岸基BDS-R海面测高及其观测值加权方法. 北京航空航天大学学报. 2024(03): 1015-1026 .
    4. 张云,赵乐久,孟婉婷,秦瑾,盛志超,杨树瑚. 北斗卫星反射信号岸基海面高度反演精度的评估. 北京航空航天大学学报. 2023(05): 999-1008 .
    5. 桑文刚,刘迎春,何秀凤,王昭然. 库区GNSS-R精细化反演水面高度及其验证研究. 全球定位系统. 2022(01): 43-48 .
    6. 邢进,刘思琦,王峰,张国栋,俞永庆,王林峰. 岸基GNSS-R海洋遥感系统设计与实现. 无线电工程. 2021(10): 1104-1109 .

    Other cited types(6)

Catalog

    Article views (1891) PDF downloads (365) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return