ZHI Lu, YU Xuchu, ZOU Bin, LIU Bing. A Multi-Layer Binary Pattern Based Method for Hyperspectral Imagery Classification Using Combined Spatial-Spectral Characteristics[J]. Geomatics and Information Science of Wuhan University, 2019, 44(11): 1659-1666. DOI: 10.13203/j.whugis20180004
Citation: ZHI Lu, YU Xuchu, ZOU Bin, LIU Bing. A Multi-Layer Binary Pattern Based Method for Hyperspectral Imagery Classification Using Combined Spatial-Spectral Characteristics[J]. Geomatics and Information Science of Wuhan University, 2019, 44(11): 1659-1666. DOI: 10.13203/j.whugis20180004

A Multi-Layer Binary Pattern Based Method for Hyperspectral Imagery Classification Using Combined Spatial-Spectral Characteristics

Funds: 

The National Key Research and Development Program of China 2016YFC0206205

More Information
  • Author Bio:

    ZHI Lu, PhD, specializes in hyperspectral image classification. E-mail: zhilu_361@163.com

  • Corresponding author:

    ZOU Bin, PhD, professor. E-mail: 210010@csu.edu.cn

  • Received Date: June 03, 2018
  • Published Date: November 04, 2019
  • It is essential to make full use of the spatial features for hyperspectral imagery classification. A multi-layer binary pattern based method for hyperspectral remote sensing imagery classification using combined spatial-spectral characteristics is proposed. Firstly, the hyperspectral remote sensing imagery was transformed to local binary pattern image reflecting the micro-structures of the imagery, and multi-layer feature vectors were acquired from the local binary pattern image reflecting a wider range of the imagery structure. Here, in order to verify the proposed method, the PaviaU, the Salinas and the Chikusei imageries were used and nine kinds of features such as spectral features, local binary pattern spatial features, the multi-resolution local binary pattern features, etc., were employed in the experiment for hyperspectral remote sensing imagery spatial-spectral classification.The classifier of this algorithm used the kernel extreme learning machine classifier. The overall classification accuracies separately reached 97.31%, 98.96% and 97.85% based on the multi-layer binary patterns spatial-spectral features which were superior to the traditional methods such as spectral classification and spatial-spectral classification using 3Gabor features. The results indicate that the proposed approach can provide the effectively distinguished features showing the higher classification accuracy and the smoother classification map.
  • [1]
    余旭初, 冯伍法, 杨国鹏, 等.高光谱遥感影像分析与应用[M].北京:科学出版社, 2013

    Yu Xuchu, Feng Wufa, Yang Guopeng, et al. Analysis and Application for Hyerspectral Imagery[M].Beijing: Science Press, 2013
    [2]
    杜培军, 夏俊士, 薛朝辉, 等.高光谱遥感影像分类研究进展[J].遥感学报, 2016, 20(2):236-256 http://d.old.wanfangdata.com.cn/Periodical/ygxb201602008

    Du Peijun, Xia Junshi, Xue Zhaohui, et al. Review of Hyperspectal Remote Sensing Image Classification[J]. Journal of Remote Sensing, 2016, 20(2):236-256 http://d.old.wanfangdata.com.cn/Periodical/ygxb201602008
    [3]
    Wang Lizhe, Zhang Jiabin, Liu Peng, et al. Spectral-Spatial Multi-Feature-Based Deep Learning for Hyperspectral Remote Sensing Image Classification[J]. Soft Computing, 2017, 21(1): 213-221 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5d240b40a2a337b673585f7eac825231
    [4]
    赵波, 苏红军, 蔡悦.一种切空间协同表示的高光谱遥感影像分类方法[J].武汉大学学报·信息科学版, 2018, 43(4):555-562 http://ch.whu.edu.cn/CN/abstract/abstract6021.shtml

    Zhao Bo, Su Hongjun, Cai Yue. A Hyperspectral Image Classification Method Based on Collaborative Representation in Tangent Space[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4):555-562 http://ch.whu.edu.cn/CN/abstract/abstract6021.shtml
    [5]
    谷雨, 徐英, 郭宝峰.融合空谱特征和集成超限学习机的高光谱图像分类[J].测绘学报, 2018, 47(9):1 238-1 249 http://d.old.wanfangdata.com.cn/Periodical/chxb201809010

    Gu Yu, Xu Ying, Guo Baofeng.Hyperspectral Image Classification by Combination of Spatial-Spectral Features and Ensemble Extreme Learning Machines[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(9):1 238-1 249 http://d.old.wanfangdata.com.cn/Periodical/chxb201809010
    [6]
    鲍蕊, 薛朝辉, 张像源, 等.综合聚类和上下文特征的高光谱遥感影像分类[J].武汉大学学报·信息科学版, 2017, 42(7):890-896 http://ch.whu.edu.cn/CN/abstract/abstract5770.shtml

    Bao Rui, Xue Zhaohui, Zhang Xiangyuan, et al. Classification on Merged with Clustering and Context for Hyperspectral Imagery[J].Geomatics and Information Science of Wuhan University, 2017, 42(7):890-896 http://ch.whu.edu.cn/CN/abstract/abstract5770.shtml
    [7]
    Fardin M, Hassan G.Improving Hyperspectral Image Classification by Combing Spectral, Texture, and Shape Features[J]. International Journal of Remote Sensing, 2015, 36(4):1 070-1 096 https://www.researchgate.net/publication/272657292_Improving_hyperspectral_image_classification_by_combining_spectral_texture_and_shape_features
    [8]
    Sun Shujin, Zhong Ping, Xiao Huaitie, et al. A MRF Model-Based Active Learning Framework for the Spectral-Spatial Classification of Hyperspectral Imagery[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9 (6) :1 074-1 088 doi: 10.1109/JSTSP.2015.2414401
    [9]
    Hu Jie, Liu Chengying, He Lin, et al. Gabor-based Active Learning for Hyperspectral Image Classification[C]. IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 2016
    [10]
    Kumar B, Dikshit O. Hyperspectral Image Classification Based on Morphological Profiles and Decision Fusion[J]. International Journal of Remote Sensing, 2017, 38(20):5 830-5 854 doi: 10.1080/01431161.2017.1348636
    [11]
    Jung J Y, Kim S W, Yoo C H, et al. LBP-Ferns-Based Feature Extraction for Robust Facial Recognition[J].IEEE Transactions on Consumer Electronics, 2017, 62 (4):446-453 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdcb1e720b1282f59d368a0301911ade
    [12]
    Li Changli, Zuo Hang, Wang Xin, et al. Hyperspectral Image Classification Based on Empirical Mode Decomposition and Local Binary Pattern[C]. International Conference on Intelligence Science and Big Data Engineering, Dalian, China, 2017
    [13]
    Li W, Chen C, Su H J, et al. Local Binary Patterns and Extreme Learning Machine for Hyperspectral Imagery Classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(7):3 681-3 693 doi: 10.1109/TGRS.2014.2381602
    [14]
    Ye Z, Fowler J E, Bai L. Spatial–Spectral HyperSpectral Classification Using Local Binary Patterns and Markov Random Fields[J]. Journal of Applied Remote Sensing, 2017, 11 (3):035002 doi: 10.1117/1.JRS.11.035002
    [15]
    Jia S, Deng B, Zhu J, et al. Local Binary Pattern-Based Hyperspectral Image Classification with Superpixel Guidance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 99:1-11 http://cn.bing.com/academic/profile?id=e04c3bccc6a6b576ae7fe993b0ac4c6a&encoded=0&v=paper_preview&mkt=zh-cn
    [16]
    刘瑞香.基于多尺度局部二值模式的高光谱图像[D].西安: 西安石油大学, 2016

    Liu Ruixiang. Research on Hyperspectral Image Classification Algorithm Based on Multi-scale Local Binary Pattern[D]. Xi'an: Xi'an Shiyou University, 2016
    [17]
    Ojala T, Pietik M. A Comparative Study of Texture Measures with Classification Based on Featured Distributions[J]. Pattern Recognition, 1996, 29(1):51-59 http://cn.bing.com/academic/profile?id=af5c928d762e12c9ee1905236a07c386&encoded=0&v=paper_preview&mkt=zh-cn
    [18]
    Chen C, Li W, Su H, et al. Spectral-Spatial Classification of Hyperspectral Image Based on Kernel Extreme Learning Machine[J]. Remote Sensing, 2014, 6(6): 5 795-5 814 doi: 10.3390/rs6065795
    [19]
    Ojala T, Pietik M, Maenpaa T. Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 24(7):971-987 http://cn.bing.com/academic/profile?id=bbab6ef5dd30d698066c963f5602e424&encoded=0&v=paper_preview&mkt=zh-cn
    [20]
    Zhou Yicong, Peng Jiangtao, Philip C L. Extreme Learning Machine with Composite Kernels for Hyperspectral Image Classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 8(6):2 351-2 360 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7d1b1b6a0ebe8ba768a29f0ae28bb910
  • Related Articles

    [1]WU Yuhao, CAO Xuefeng. Hilbert Code Index Method for Spatiotemporal Data of Virtual Battlefield Environment[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9): 1403-1411. DOI: 10.13203/j.whugis20190394
    [2]ZHU Jie, ZHANG Hongjun. Battlefield Geographic Environment Spatiotemporal Process Model Based on Simulation Event[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9): 1367-1377, 1437. DOI: 10.13203/j.whugis20200175
    [3]ZHU Jie, YOU Xiong, XIA Qing, ZHANG Hongjun. Battlefield Geographic Environment Data Organizational Process Modeling Based on OOPN[J]. Geomatics and Information Science of Wuhan University, 2020, 45(7): 1027-1034. DOI: 10.13203/j.whugis20180313
    [4]LI Zhaoxing, ZHAI Jingsheng, WU Fang. A Shape Similarity Assessment Method for Linear Feature Generalization[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1859-1864. DOI: 10.13203/j.whugis20180164
    [5]ZHU Jie, YOU Xiong, XIA Qing. Battlefield Environment Object Spatio-Temporal Data Organizing Model Based on Task-Process[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1739-1745. DOI: 10.13203/j.whugis20170074
    [6]LI Jian, ZHOU Qu, CHEN Xiaoling, TIAN Liqiao, LI Tingting. Spatial Scale Study on Quantitative Remote Sensing of Highly Dynamic Coastal/Inland Waters[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6): 937-942. DOI: 10.13203/j.whugis20160174
    [7]XU Junkui, WU Fang, LIU Wenfu, JIN Pengfei. Settlement Incremental Updating Quality Evaluation Basedon Neighborhood Spatial Similarity[J]. Geomatics and Information Science of Wuhan University, 2014, 39(4): 476-480. DOI: 10.13203/j.whugis20120117
    [8]AN Xiaoya, SUN Qun, YU Bohu. Feature Matching from Network Data at Different Scales Based on Similarity Measure[J]. Geomatics and Information Science of Wuhan University, 2012, 37(2): 224-228.
    [9]LIU Pengcheng, LUO Jing, AI Tinghua, LI Chang. Evaluation Model for Similarity Based on Curve Generalization[J]. Geomatics and Information Science of Wuhan University, 2012, 37(1): 114-117.
    [10]Wang Qiao. Self-similarity Analysis of Cartographic Lines and the Automated Line Generalization[J]. Geomatics and Information Science of Wuhan University, 1995, 20(2): 123-128.
  • Cited by

    Periodical cited type(1)

    1. 李成名,武鹏达,印洁. 图数统一表达地理模型及自补偿方法. 测绘学报. 2017(10): 1688-1697 .

    Other cited types(4)

Catalog

    Article views (1402) PDF downloads (125) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return