Citation: | ZHI Lu, YU Xuchu, ZOU Bin, LIU Bing. A Multi-Layer Binary Pattern Based Method for Hyperspectral Imagery Classification Using Combined Spatial-Spectral Characteristics[J]. Geomatics and Information Science of Wuhan University, 2019, 44(11): 1659-1666. DOI: 10.13203/j.whugis20180004 |
[1] |
余旭初, 冯伍法, 杨国鹏, 等.高光谱遥感影像分析与应用[M].北京:科学出版社, 2013
Yu Xuchu, Feng Wufa, Yang Guopeng, et al. Analysis and Application for Hyerspectral Imagery[M].Beijing: Science Press, 2013
|
[2] |
杜培军, 夏俊士, 薛朝辉, 等.高光谱遥感影像分类研究进展[J].遥感学报, 2016, 20(2):236-256 http://d.old.wanfangdata.com.cn/Periodical/ygxb201602008
Du Peijun, Xia Junshi, Xue Zhaohui, et al. Review of Hyperspectal Remote Sensing Image Classification[J]. Journal of Remote Sensing, 2016, 20(2):236-256 http://d.old.wanfangdata.com.cn/Periodical/ygxb201602008
|
[3] |
Wang Lizhe, Zhang Jiabin, Liu Peng, et al. Spectral-Spatial Multi-Feature-Based Deep Learning for Hyperspectral Remote Sensing Image Classification[J]. Soft Computing, 2017, 21(1): 213-221 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5d240b40a2a337b673585f7eac825231
|
[4] |
赵波, 苏红军, 蔡悦.一种切空间协同表示的高光谱遥感影像分类方法[J].武汉大学学报·信息科学版, 2018, 43(4):555-562 http://ch.whu.edu.cn/CN/abstract/abstract6021.shtml
Zhao Bo, Su Hongjun, Cai Yue. A Hyperspectral Image Classification Method Based on Collaborative Representation in Tangent Space[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4):555-562 http://ch.whu.edu.cn/CN/abstract/abstract6021.shtml
|
[5] |
谷雨, 徐英, 郭宝峰.融合空谱特征和集成超限学习机的高光谱图像分类[J].测绘学报, 2018, 47(9):1 238-1 249 http://d.old.wanfangdata.com.cn/Periodical/chxb201809010
Gu Yu, Xu Ying, Guo Baofeng.Hyperspectral Image Classification by Combination of Spatial-Spectral Features and Ensemble Extreme Learning Machines[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(9):1 238-1 249 http://d.old.wanfangdata.com.cn/Periodical/chxb201809010
|
[6] |
鲍蕊, 薛朝辉, 张像源, 等.综合聚类和上下文特征的高光谱遥感影像分类[J].武汉大学学报·信息科学版, 2017, 42(7):890-896 http://ch.whu.edu.cn/CN/abstract/abstract5770.shtml
Bao Rui, Xue Zhaohui, Zhang Xiangyuan, et al. Classification on Merged with Clustering and Context for Hyperspectral Imagery[J].Geomatics and Information Science of Wuhan University, 2017, 42(7):890-896 http://ch.whu.edu.cn/CN/abstract/abstract5770.shtml
|
[7] |
Fardin M, Hassan G.Improving Hyperspectral Image Classification by Combing Spectral, Texture, and Shape Features[J]. International Journal of Remote Sensing, 2015, 36(4):1 070-1 096 https://www.researchgate.net/publication/272657292_Improving_hyperspectral_image_classification_by_combining_spectral_texture_and_shape_features
|
[8] |
Sun Shujin, Zhong Ping, Xiao Huaitie, et al. A MRF Model-Based Active Learning Framework for the Spectral-Spatial Classification of Hyperspectral Imagery[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9 (6) :1 074-1 088 doi: 10.1109/JSTSP.2015.2414401
|
[9] |
Hu Jie, Liu Chengying, He Lin, et al. Gabor-based Active Learning for Hyperspectral Image Classification[C]. IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 2016
|
[10] |
Kumar B, Dikshit O. Hyperspectral Image Classification Based on Morphological Profiles and Decision Fusion[J]. International Journal of Remote Sensing, 2017, 38(20):5 830-5 854 doi: 10.1080/01431161.2017.1348636
|
[11] |
Jung J Y, Kim S W, Yoo C H, et al. LBP-Ferns-Based Feature Extraction for Robust Facial Recognition[J].IEEE Transactions on Consumer Electronics, 2017, 62 (4):446-453 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdcb1e720b1282f59d368a0301911ade
|
[12] |
Li Changli, Zuo Hang, Wang Xin, et al. Hyperspectral Image Classification Based on Empirical Mode Decomposition and Local Binary Pattern[C]. International Conference on Intelligence Science and Big Data Engineering, Dalian, China, 2017
|
[13] |
Li W, Chen C, Su H J, et al. Local Binary Patterns and Extreme Learning Machine for Hyperspectral Imagery Classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(7):3 681-3 693 doi: 10.1109/TGRS.2014.2381602
|
[14] |
Ye Z, Fowler J E, Bai L. Spatial–Spectral HyperSpectral Classification Using Local Binary Patterns and Markov Random Fields[J]. Journal of Applied Remote Sensing, 2017, 11 (3):035002 doi: 10.1117/1.JRS.11.035002
|
[15] |
Jia S, Deng B, Zhu J, et al. Local Binary Pattern-Based Hyperspectral Image Classification with Superpixel Guidance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 99:1-11 http://cn.bing.com/academic/profile?id=e04c3bccc6a6b576ae7fe993b0ac4c6a&encoded=0&v=paper_preview&mkt=zh-cn
|
[16] |
刘瑞香.基于多尺度局部二值模式的高光谱图像[D].西安: 西安石油大学, 2016
Liu Ruixiang. Research on Hyperspectral Image Classification Algorithm Based on Multi-scale Local Binary Pattern[D]. Xi'an: Xi'an Shiyou University, 2016
|
[17] |
Ojala T, Pietik M. A Comparative Study of Texture Measures with Classification Based on Featured Distributions[J]. Pattern Recognition, 1996, 29(1):51-59 http://cn.bing.com/academic/profile?id=af5c928d762e12c9ee1905236a07c386&encoded=0&v=paper_preview&mkt=zh-cn
|
[18] |
Chen C, Li W, Su H, et al. Spectral-Spatial Classification of Hyperspectral Image Based on Kernel Extreme Learning Machine[J]. Remote Sensing, 2014, 6(6): 5 795-5 814 doi: 10.3390/rs6065795
|
[19] |
Ojala T, Pietik M, Maenpaa T. Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 24(7):971-987 http://cn.bing.com/academic/profile?id=bbab6ef5dd30d698066c963f5602e424&encoded=0&v=paper_preview&mkt=zh-cn
|
[20] |
Zhou Yicong, Peng Jiangtao, Philip C L. Extreme Learning Machine with Composite Kernels for Hyperspectral Image Classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 8(6):2 351-2 360 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7d1b1b6a0ebe8ba768a29f0ae28bb910
|
[1] | WU Yuhao, CAO Xuefeng. Hilbert Code Index Method for Spatiotemporal Data of Virtual Battlefield Environment[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9): 1403-1411. DOI: 10.13203/j.whugis20190394 |
[2] | ZHU Jie, ZHANG Hongjun. Battlefield Geographic Environment Spatiotemporal Process Model Based on Simulation Event[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9): 1367-1377, 1437. DOI: 10.13203/j.whugis20200175 |
[3] | ZHU Jie, YOU Xiong, XIA Qing, ZHANG Hongjun. Battlefield Geographic Environment Data Organizational Process Modeling Based on OOPN[J]. Geomatics and Information Science of Wuhan University, 2020, 45(7): 1027-1034. DOI: 10.13203/j.whugis20180313 |
[4] | LI Zhaoxing, ZHAI Jingsheng, WU Fang. A Shape Similarity Assessment Method for Linear Feature Generalization[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1859-1864. DOI: 10.13203/j.whugis20180164 |
[5] | ZHU Jie, YOU Xiong, XIA Qing. Battlefield Environment Object Spatio-Temporal Data Organizing Model Based on Task-Process[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1739-1745. DOI: 10.13203/j.whugis20170074 |
[6] | LI Jian, ZHOU Qu, CHEN Xiaoling, TIAN Liqiao, LI Tingting. Spatial Scale Study on Quantitative Remote Sensing of Highly Dynamic Coastal/Inland Waters[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6): 937-942. DOI: 10.13203/j.whugis20160174 |
[7] | XU Junkui, WU Fang, LIU Wenfu, JIN Pengfei. Settlement Incremental Updating Quality Evaluation Basedon Neighborhood Spatial Similarity[J]. Geomatics and Information Science of Wuhan University, 2014, 39(4): 476-480. DOI: 10.13203/j.whugis20120117 |
[8] | AN Xiaoya, SUN Qun, YU Bohu. Feature Matching from Network Data at Different Scales Based on Similarity Measure[J]. Geomatics and Information Science of Wuhan University, 2012, 37(2): 224-228. |
[9] | LIU Pengcheng, LUO Jing, AI Tinghua, LI Chang. Evaluation Model for Similarity Based on Curve Generalization[J]. Geomatics and Information Science of Wuhan University, 2012, 37(1): 114-117. |
[10] | Wang Qiao. Self-similarity Analysis of Cartographic Lines and the Automated Line Generalization[J]. Geomatics and Information Science of Wuhan University, 1995, 20(2): 123-128. |
1. |
李成名,武鹏达,印洁. 图数统一表达地理模型及自补偿方法. 测绘学报. 2017(10): 1688-1697 .
![]() |