-
摘要: 常规高光谱影像逐像素分类往往没有考虑空间相关性,分类结果未体现地物的空间关联和分布特征。为了在分类中充分利用空间特征,利用聚类信息并结合隐马尔可夫随机场模型讨论了高光谱遥感影像光谱-空间分类方法。首先,在不同特征提取方法(最小噪声分离、独立成分分析和主成分分析)下,使用不同聚类方法(k-均值、迭代自组织分析算法和模糊c-均值算法)借助隐马尔可夫随机场获取优化的分割图;然后,采用4连通区域标记法对分割区域标记生成图像对象,并根据支持向量机的逐像素分类结果采用多数投票法对图像对象进行分类;最后,借助凹槽窗口邻域滤波技术改进分类结果,削弱“椒盐”现象。该方法综合了监督分类和非监督分类的优势,通过聚类引入地物空间相关性信息,通过隐马尔可夫随机场引入上下文特征,较好地弥补了单纯基于光谱信息分类的不足。Abstract: The traditional pixel-wised classification methods for hyperspectral image (HIS) only consider spectral information while ignoring the spatial information, resulting in a big limit of classification performance. Clustering which could assemble pixels similar in spectral features into spatial adjacent clusters, thus effectively express similarity and spatial correlation of adjacent pixels. In order to take full advantages of spatial correlation, this paper explore a spectral-spatial classification method for HSI merged with clustering and context. Firstly, under condition of different feature extraction(MNF, ICA and PCA), different clustering methods(k-means, ISODATA and FCM) are used in hidden markov random field to obtain optimized segmentation map containing context features; secondly, the regions in the segmentation map are labeled by using a four-connected neighborhood labeling method to generate image objects, and a majority voting method is used to classify the objects based on the initial classification map derived from support vector machine (SVM) optimized by particle swarm optimization (PSO). Finally, a Chamfer neighborhood filtering technique is used to regularize the classification map, which partially reduces the noise. This method utilizing spatial information from clustering and introducing context features from HMRF takes advantage of supervised classification and unsupervised classification to gain noise reduction, high-accuracy and high homogeneity, which makes up for the inadequacy of the classification based only on spectral information. Experiment on ROSIS data set and AVIRIS data set respectively illustrate that the method can obtain better performance in terms of classification. The overall accuracy of ROSIS data set reaches to 98.53%, 5.01% higher than that obtained by SVM. Meanwhile the overall accuracy of AVIRIS data set climbs to 91.97%, 7.01% higher than SVM result. We also find that different feature extraction and different clustering will influence the spectral-spatial method using HMRF with edge-protection.
-
致谢: 感谢冰岛大学Benediktsson教授和Ghamisi博士对本文提出的宝贵意见。
-
表 1 分类方法的简写
Table 1 Abbreviations of Classification Method
分类方法 简记方式 K-Means +SVM K-SVM ISODATA+SVM I-SVM FCM+SVM F-SVM KM +MNF+HMRF +SVM KHM-SVM ISODATA+MNF+HMRF+SVM IHM-SVM FCM+MNF+HMRF+SVM FHM-SVM KM+ICA+HMRF+SVM KHI-SVM ISODATA+ICA+HMRF+SVM IHI-SVM FCM+ICA+HMRF+SVM FHI-SVM KM+PCA+HMRF+SVM KHP-SVM ISODATA+PCA+HMRF+SVM IHP-SVM FCM+PCA+HMRF+SVM FHP-SVM 表 2 不同分类方法对ROSIS得到的分类结果
Table 2 Classification Results Obtained by Different Methods for the ROSIS Data Set
分类方法 总体精度/% 平均精度/% Kappa系数 No-PR PR No-PR PR No-PR PR SVM 93.52 95.43 91.99 94.65 0.914 0.952 K-SVM 96.06 97.02 94.28 95.33 0.948 0.960 I-SVM 97.61 98.3 97.22 98.00 0.968 0.977 F-SVM 96.32 97.41 95.51 96.92 0.951 0.966 KHM-SVM 95.78 96.66 94.41 95.21 0.944 0.956 IHM-SVM 97.99 98.53 97.77 98.30 0.973 0.981 FHM-SVM 95.32 96.43 93.82 95.05 0.938 0.953 KHI-SVM 95.53 95.80 92.60 92.99 0.940 0.944 IHI-SVM 96.80 97.14 95.52 95.96 0.957 0.962 FHI-SVM 95.42 96.35 93.02 94.28 0.939 0.951 KHP-SVM 96.8 97.14 95.52 95.96 0.957 0.961 IHP-SVM 95.29 96.09 94.41 95.29 0.937 0.948 FHP-SVM 94.51 95.81 93.54 94.84 0.927 0.943 表 3 不同分类方法对AVIRIS得到的分类结果
Table 3 Classification Results Obtained by Different Methods for the AVIRIS Data Set
序号 地物
名称训练
数量测试
数量K-
SVMI-
SVMF-
SVMKHM-
SVMIHM-
SVMFHM-
SVMKHI-
SVMIHI-
SVMFHI-
SVMKHP-
SVMIHP-
SVMFHP-
SVM1 苜蓿 5 49 83.93 89.81 98.91 86.77 85.42 71.00 100.00 92.39 92.39 61.96 83.70 82.61 2 非耕犁玉米 143 1 291 87.58 81.32 89.11 89.07 89.37 87.94 79.62 82.95 90.54 84.45 87.18 91.17 3 少耕犁玉米 83 751 85.84 83.97 80.52 87.54 90.11 80.16 74.70 85.95 87.48 74.45 77.83 80.41 4 玉米 23 211 96.71 94.77 88.65 88.40 88.42 86.91 89.16 89.84 85.96 83.34 84.81 85.09 5 草地/牧草 49 448 91.33 91.16 94.30 93.39 90.59 96.00 90.36 92.22 93.28 94.10 93.10 94.87 6 草地/树木 74 673 97.58 97.29 97.73 97.12 95.95 97.65 94.46 93.91 96.89 98.17 94.70 97.66 7 草地/修剪牧草 2 24 96.00 96.00 96.67 98.00 94.00 90.86 94.77 77.14 100.00 90.86 92.72 92.72 8 干草堆 48 441 99.19 99.65 100.00 99.53 98.72 97.12 99.37 99.06 99.58 96.68 98.47 97.61 9 燕麦 2 18 91.86 90.91 84.13 82.64 62.50 64.17 60.00 69.06 92.50 78.10 73.33 85.00 10 非耕犁大豆 96 872 86.71 85.16 84.81 92.38 90.86 88.43 85.61 81.29 85.92 87.26 87.90 88.01 11 少耕犁大豆 246 2 222 90.20 89.66 89.86 92.71 93.31 90.58 89.98 91.26 91.07 91.12 90.84 91.17 12 清理过的大豆地 61 553 87.41 84.88 89.87 87.73 88.56 89.75 90.64 87.33 87.92 90.37 88.29 91.69 13 小麦 21 191 97.60 98.38 99.02 98.09 98.91 99.02 96.56 95.06 97.80 99.03 95.33 99.27 14 木材 129 1 165 95.68 95.16 95.54 95.38 95.51 96.11 94.94 94.69 96.01 95.70 95.02 95.25 15 建筑-草地-
树木-机器38 342 78.86 76.70 79.91 76.90 81.96 80.25 73.00 72.94 73.72 76.05 71.63 75.17 16 石钢塔 9 86 97.60 98.81 97.33 79.76 89.88 82.55 89.37 80.79 78.90 97.94 93.46 97.94 OA/% 90.52 88.93 90.31 91.66 91.97 90.27 87.70 88.40 90.76 89.16 89.28 90.81 AA/% 91.57 90.85 91.65 88.97 89.63 87.41 87.66 86.62 90.62 87.47 88.02 90.35 Kappa系数 0.892 0.874 0.889 0.905 0.908 0.889 0.859 0.868 0.895 0.876 0.878 0.895 -
[1] 童庆禧, 张兵, 郑兰芬.高光谱遥感:原理、技术与应用[M].北京:高等教育出版社, 2006 Tong Qingxi, Zhang Bin, Zheng Lanfen. Hyperspectral Remote Sensing:the Principle, Technology and Application[M]. Beijing:Higher Education Press, 2006
[2] Plaza A, Benediktsson J A, Boardman J W, et al. Recent Advances in Techniques for Hyperspectral Image Processing[J]. Remote Sens Environ, 2009, 113:S110-S122 doi: 10.1016/j.rse.2007.07.028
[3] Bioucas-Dias J M, Plaza A, Camps-Valls G, et al. Hyperspectral Remote Sensing Data Analysis and Future Challenges[J]. IEEE Geoscience & Remote Sensing Magazine, 2013, 1(2):6-36 http://www.academia.edu/14028682/Hyperspectral_Remote_Sensing_Data_Analysis_and_Future_Challenges
[4] Camps-Valls G, Tuia D, Bruzzone L, et al. Advances in Hyperspectral Image Classification[J]. IEEE Signal Processing Magazine, 2014, 31(1):45-54 doi: 10.1109/MSP.2013.2279179
[5] Pal M and Mather P M. Support Vector Machines for Classification in Remote Sensing[J]. International Journal of Remote Sensing, 2005, 26(5):1007-1011 doi: 10.1080/01431160512331314083
[6] Moser G, Serpico S B. Combining Support Vector Machines and Markov Random Fields in an Integrated Framework for Contextual Image Classification[J].IEEE Transactions on Geoscience & Remote Sensing, 2012, 50(5):1-19 https://www.researchgate.net/publication/235890131_Combining_Support_Vector_Machines_and_Markov_Random_Fields_in_an_Integrated_Framework_for_Contextual_Image_Classification
[7] Fauvel M, Tarabalka Y, Benediktsson J A, et al. Advances in Spectral-spatial Classification of Hyperspectral Images[J]. Proceedings of the IEEE, 2013, 101(3):652-675 doi: 10.1109/JPROC.2012.2197589
[8] Plaza A, Martinez P, Perez R, et al. A New Approach to Mixed Pixel Classification of Hyperspectral Imagery based on Extended Morphological Profiles[J]. Pattern Recognition, 2004, 37(6):1097-1116 doi: 10.1016/j.patcog.2004.01.006
[9] Borhani M, Ghassemian H. Hyperspectral Image Classification Based on Spectral-spatial Features Using Probabilistic SVM and Locally Weighted Markov Random Fields[C]. Intelligent Systems (ICIS), Iran, 2014
[10] Tarabalka Y, Benediktsson J A, Chanussot J. Spectral-spatial Classification of Hyperspectral Imagery Based on Partitional Clustering Techniques[J].IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(8):2973-2987 doi: 10.1109/TGRS.2009.2016214
[11] 刘国英, 茅力非, 王雷光, 等.基于小波域分层Markov模型的纹理分割[J].武汉大学学报·信息科学版, 2009, 34(5):531-534 http://ch.whu.edu.cn/CN/abstract/abstract1248.shtml Liu Guoying, Mao Lifei, Wang Leiguang, et al. Texture Segmentation Based on a Hierarchical Markov Model in Wavelet Domain[J]. Geomatics and Information Science of Wuhan University, 2009, 34(5):531-534 http://ch.whu.edu.cn/CN/abstract/abstract1248.shtml
[12] Elliott R J, Aggoun L, Moore J B. Hidden Markov Models:Estimation and Control Stochastic Modelling and Applied Probability[M]. NY:Springer, 2008
[13] Ghamisi P, Benediktsson J A, Ulfarsson M O. Spectral-spatial Classification of Hyperspectral Images Based on Hidden Markov Random Fields[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5):2565-2574 doi: 10.1109/TGRS.2013.2263282
[14] Gonzalez R C, Woods R E. Digital Image Processing[M]. 2nd ed. Englewood Cliffs, NJ:Prentice-Hall, 2002
[15] Eddy S R. ProfileHidden Markov Models[J]. Boiinformatics Review, 1998, 14(9):755-763 doi: 10.1093/bioinformatics/14.9.755
[16] Jain A K, Murty M N, Flynn P J.Data Clustering:A Review[J]. ACM Comput Surv, 1999, 31(3):264-323 doi: 10.1145/331499.331504