YU Jie, WANG Shaohua, JIAO Shuai, ZHU Lin, CHANG Zhanqiang, CHEN Mi. Improvement of Spatio-Temporal Three-Dimensional Phase Unwrapping Algorithm[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9): 1355-1362. DOI: 10.13203/j.whugis20170414
Citation: YU Jie, WANG Shaohua, JIAO Shuai, ZHU Lin, CHANG Zhanqiang, CHEN Mi. Improvement of Spatio-Temporal Three-Dimensional Phase Unwrapping Algorithm[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9): 1355-1362. DOI: 10.13203/j.whugis20170414

Improvement of Spatio-Temporal Three-Dimensional Phase Unwrapping Algorithm

Funds: 

The National Natural Science Foundation of China 41671417

Technological Innovation Service Capacity Building Fundamental Research Funds (Scientific Research) 025185305000/191

More Information
  • Author Bio:

    YU Jie, PhD, professor, specializes in the processing and application of remote sensing imagery and spatial data analysis. E-mail:yuj2011@whu.edu.cn

  • Received Date: July 18, 2018
  • Published Date: September 04, 2019
  • Three-dimensional phase unwrapping is one of the key steps of time-series interferometric synthetic aperture radar (InSAR) technology. The unwrapping results directly affect the accuracy of time-series InSAR land subsidence monitoring. Aiming at the problem of the whole period unwrapping error caused by phase undersampling in areas with serious land subsidence and large change of terrain slope, a weighted least squares phase unwrapping algorithm based on frequency confidence is proposed, which replaces the weighted least squares phase unwrapping algorithm based on phase gradient in the time-dependent three-dimensional phase. By improving the accuracy of phase slope change estimation, the accuracy and stability of spatio-temporal three-dimensional phase unwrapping can be improved. The land subsidence results of the typical area in Beijing are obtained by using the improved spatio-temporal three-dimensional phase unwrapping method. Compared with the classical spatio-temporal three-dimensional phase unwrapping method, the improved method can obtain higher accuracy of land subsidence monitoring results. Especially for the subsidence funnel region where the slope changes greatly and the decorrelation exists obviously, the subsidence monitoring accuracy has improved significantly.
  • [1]
    Hooper A, Zebker H A. Phase Unwrapping in Three Dimensions with Application to InSAR Time Series[J]. JOSAA, 2007, 24(9):2737-2747 doi: 10.1364/JOSAA.24.002737
    [2]
    Fornaro G, Pauciullo A, Reale D. A Null-Space Method for the Phase Unwrapping of Multitemporal SAR Interferometric Stacks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(6):2323-2334 doi: 10.1109/TGRS.2010.2102767
    [3]
    Hooper A. A Statistical-Cost Approach to Unwrapping the Phase of InSAR Time Series[C]. Technology for EO Support Workshop, Frascati, Italy, 2010
    [4]
    岳焕印, 郭华东, 韩春明, 等.噪声条件下的干涉SAR相位解缠[J].测绘学报, 2002, 31(2):151-156 doi: 10.3321/j.issn:1001-1595.2002.02.012

    Yue Huanyin, Guo Huadong, Han Chunming, et al. Interferometric SAR Phase Unwrapping Under Noise Conditions[J]. Acta Geodaetica et Cartographica Sinica, 2002, 31(2):151-156 doi: 10.3321/j.issn:1001-1595.2002.02.012
    [5]
    安道祥.高分辨率SAR成像处理技术研究[D].长沙: 国防科学技术大学, 2011 http://cdmd.cnki.com.cn/Article/CDMD-90002-1011303327.htm

    An Daoxiang. Research on High Resolution SAR Imaging Processing Technology[D]. Changsha: National University of Defense Technology, 2011 http://cdmd.cnki.com.cn/Article/CDMD-90002-1011303327.htm
    [6]
    Davidson G W, Bamler R. Multiresolution Phase Unwrapping for SAR Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(1):163-173 doi: 10.1109/36.739150
    [7]
    吴迪, 朱岱寅, 沈明威, 等.基于时变空时自回归模型的STAP算法[J].现代雷达, 2013, 35(1):49-54 doi: 10.3969/j.issn.1004-7859.2013.01.011

    Wu Di, Zhu Daiyin, Shen Mingwei, et al. STAP Algorithm Based on Time-Varying Space-Time Autoregressive Model[J]. Modern Radar, 2013, 35(1):49-54 doi: 10.3969/j.issn.1004-7859.2013.01.011
    [8]
    何平, 许才军, 温扬茂, 等.时序InSAR的误差模型建立及模拟研究[J].武汉大学学报·信息科学版, 2016, 41(6):752-758 http://ch.whu.edu.cn/CN/abstract/abstract5459.shtml

    He Ping, Xu Caijun, Wen Yangmao, et al. Establishment and Simulation of Error Model for Time Series InSAR[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6):752-758 http://ch.whu.edu.cn/CN/abstract/abstract5459.shtml
    [9]
    Hooper A, Segall P, Zebker H. Persistent Scatterer Interferometric Synthetic Aperture Radar for Crustal Deformation Analysis, with Application to Volcán Alcedo, Galápagos[J]. Journal of Geophysical Research, 2007, 112(B07407):1-21 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2006JB004763
    [10]
    范洪冬. InSAR若干关键算法及其在地表沉降监测中的应用研究[D].徐州: 中国矿业大学, 2010 http://cdmd.cnki.com.cn/Article/CDMD-10290-2010280170.htm

    Fan Hongdong. Several Key Algorithms of InSAR and Their Application in Surface Subsidence Monitoring[D]. Xuzhou: China University of Mining and Technology, 2010 http://cdmd.cnki.com.cn/Article/CDMD-10290-2010280170.htm
    [11]
    Goldstein R M, Zebker H A, Werner C L. Satellite Radar Interferometry:Two-Dimensional Phase Unwrapping[J]. Radio Science, 1988, 23(4):713-720 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0232404272/
    [12]
    Herráez M A, Burton D R, Lalor M J, et al. Fast Two-Dimensional Phase-Unwrapping Algorithm Based on Sorting by Reliability Following a Noncontinuous Path[J]. Applied Optics, 2002, 41(35):7437-7444 doi: 10.1364/AO.41.007437
    [13]
    李鹏, 李振洪, 李陶, 等.宽幅InSAR大地测量学与大尺度形变监测方法[J].武汉大学学报·信息科学版, 2017, 42(9):1195-1202 http://ch.whu.edu.cn/CN/abstract/abstract5817.shtml

    Li Peng, Li Zhenhong, Li Tao, et al. Wide-InSAR Geodesy and Large Scale Deformation Monitoring Methods[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9):1195-1202 http://ch.whu.edu.cn/CN/abstract/abstract5817.shtml
    [14]
    Caro Cuenca M, Hooper A J, Hanssen R F. A New Method for Temporal Phase Unwrapping of Persistent Scatterers InSAR Time Series[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(11):4606-4615 doi: 10.1109/TGRS.2011.2143722
    [15]
    郝华东, 刘国林, 陈贤雷, 等.基于DEM的低相干区SAR干涉图卡尔曼滤波相位解缠算法[J].国土资源遥感, 2013, 25(1):50-55 http://d.old.wanfangdata.com.cn/Periodical/gtzyyg201301009

    Hao Huadong, Liu Guolin, Chen Xianlei, et al. DEM-Based Kalman Filtering Phase Unwrapping Algorithm for SAR Interferogram in Low Coherence Region[J]. Remote Sensing for Land and Resources, 2013, 25(1):50-55 http://d.old.wanfangdata.com.cn/Periodical/gtzyyg201301009
    [16]
    Liao M S, Tang J, Wang T, et al. Landslide Monitoring with High-Resolution SAR Data in the Three Gorges Region[J]. Science China:Earth Sciences, 2012, 55(4):590-601 doi: 10.1007/s11430-011-4259-1
    [17]
    敖萌, 张勤, 赵超英, 等.改进的CR-InSAR技术用于四川甲居滑坡形变监测[J].武汉大学学报·信息科学版, 2017, 42(3):377-383 http://ch.whu.edu.cn/CN/abstract/abstract5689.shtml

    Ao Meng, Zhang Qin, Zhao Chaoying, et al. Improved CR-InSAR Technology for Monitoring Landslide Deformation in Jiaju, Sichuan[J]. Geomatics and Information Science of Wuhan University, 2017, 42(3):377-383 http://ch.whu.edu.cn/CN/abstract/abstract5689.shtml
    [18]
    Gdeisat M A, Burton D R, Lilley F, et al. Shifting of Wrapped Phase Maps in the Frequency Domain Using a Rational Number[J]. Measurement Science & Technology, 2016, 27(10):1-6 http://adsabs.harvard.edu/abs/2016MeScT..27j5003G
    [19]
    邹斌, 许可, 张腊梅, 等. SAR图像建筑物三维信息提取方法研究[J].雷达科学与技术, 2009, 7(2):95-101 doi: 10.3969/j.issn.1672-2337.2009.02.004

    Zou Bin, Xu Ke, Zhang Lamei, et al. Research on 3D Information Extraction Method for SAR Image Buildings[J]. Radar Science and Technology, 2009, 7(2):95-101 doi: 10.3969/j.issn.1672-2337.2009.02.004
    [20]
    Zhu D Y, Zhu Z D. Improving the Coherence for InSAR Processing and Coherence Estimation Using the Linear Phase Model[J]. Acta Electronica Sinica, 2005, 33(9):1594-1598 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dianzixb200509014
    [21]
    刘欢欢. PSInSAR在地面沉降监测中的研究分析[D].北京: 中国地质大学, 2010 http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1781855

    Liu Huanhuan. Research and Analysis of PSInSAR in Land Subsidence Monitoring[D]. Beijing: China University of Geosciences, 2010 http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1781855
    [22]
    Chen B, Gong H, Li X, et al. Spatial Correlation Between Land Subsidence and Urbanization in Beijing, China[J]. Natural Hazards, 2015, 75(3):2637-2650 doi: 10.1007/s11069-014-1451-6
  • Cited by

    Periodical cited type(37)

    1. 罗斌,刘文豪,吴进,韩嘉福,吴文周,李洪省. 从地理信息系统到地理智能体. 地球信息科学学报. 2025(01): 83-99 .
    2. 王培晓,张恒才,张岩,程诗奋,张彤,陆锋. 地理空间智能预测研究进展与发展趋势. 地球信息科学学报. 2025(01): 60-82 .
    3. 王行风,陈国良. 地理知识图谱辅助的煤矿区生态损伤智慧识别研究. 地球信息科学学报. 2025(02): 367-380 .
    4. 张岸,朱俊锴. 新一代人工智能驱动下地图学研究的机遇与挑战. 地球信息科学学报. 2024(01): 35-45 .
    5. 刘康. 人类移动数据生成方法:研究进展与趋势探讨. 地球信息科学学报. 2024(04): 831-847 .
    6. 闾国年,袁林旺,陈旻,张雪英,周良辰,俞肇元,罗文,乐松山,吴明光. 地理信息学科发展的思考. 地球信息科学学报. 2024(04): 767-778 .
    7. 吴田军,骆剑承,李曼嘉,张静,赵馨,胡晓东,左进,闵帆,王玲玉,黄启厅. 地理时空数字化底座理论框架构建与应用实践. 地球信息科学学报. 2024(04): 799-830 .
    8. 王宇君,郭健,徐立,李宗明,李可欣. 利用深度森林进行船舶类型分类识别. 测绘科学技术学报. 2024(04): 425-432+440 .
    9. 邬伦,侯远樵,刘瑜. 大数据的6种地理学应用范式. 测绘学报. 2024(08): 1465-1479 .
    10. 石岩,王达,邓敏,杨学习. 时空异常探测:从数据驱动到知识驱动的内涵转变与实现路径. 测绘学报. 2024(08): 1493-1504 .
    11. 杨开先,甄峰. 地理学视角下城市空间智能化研究进展与思考. 地理科学. 2024(07): 1166-1177 .
    12. 李洁,王继周,毛曦,路文娟. 基于语义编码的自然语言时空问句语义理解. 测绘科学. 2024(11): 197-206 .
    13. 刘瑜,汪珂丽,邢潇月,郭浩,张维昱,罗琴瑶,高松,黄舟,李海峰,李新,王姣娥,王劲峰,朱递. 地理分析中的空间效应. 地理学报. 2023(03): 517-531 .
    14. 杨颖. 人工智能在地图学中的应用展望. 电子技术. 2023(03): 162-163 .
    15. 诸云强,孙凯,胡修棉,闾海荣,王新兵,杨杰,王曙,李威蓉,宋佳,苏娜,牟兴林. 大规模地球科学知识图谱构建与共享应用框架研究与实践. 地球信息科学学报. 2023(06): 1215-1227 .
    16. 陆锋,诸云强,张雪英. 时空知识图谱研究进展与展望. 地球信息科学学报. 2023(06): 1091-1105 .
    17. 诸云强,孙凯,李威蓉,王曙,宋佳,程全英,杨杰,牟兴林,耿文广,代小亮. 地球科学知识图谱比较分析与启示:构建方法与内容视角. 高校地质学报. 2023(03): 382-394 .
    18. 张彤,刘仁宇,王培晓,高楚林,刘杰,王望舒. 感知物理先验的机器学习及其在地理空间智能中的研究前景. 地球信息科学学报. 2023(07): 1297-1311 .
    19. 丁建丽,葛翔宇,王瑾杰,赵爽,丁玥,秦少峰,朱传梅,马雯. 地理学领域的人工智能应用与思考. 新疆大学学报(自然科学版)(中英文). 2023(04): 385-397 .
    20. 付偲,李超岭,张海燕,刘畅,李丰丹. 基于多模态特征融合的地质体识别方法. 地球科学. 2023(10): 3743-3752 .
    21. Yunqiang ZHU,Kai SUN,Shu WANG,Chenghu ZHOU,Feng LU,Hairong LV,Qinjun QIU,Xinbing WANG,Yanmin QI. An adaptive representation model for geoscience knowledge graphs considering complex spatiotemporal features and relationships. Science China Earth Sciences. 2023(11): 2563-2578 .
    22. 诸云强,孙凯,王曙,周成虎,陆锋,闾海荣,邱芹军,王新兵,祁彦民. 顾及复杂时空特征及关系的地球科学知识图谱自适应表达模型. 中国科学:地球科学. 2023(11): 2609-2622 .
    23. 陈杰,邓敏,刘启亮,石岩,刘慧敏. 大数据智能时代地理信息科学专业人才培养方案的提质与实践. 测绘通报. 2023(11): 163-167 .
    24. 黄露,侯爱羚. 基于省市联动的基础测绘数据智能更新技术. 地理空间信息. 2023(12): 83-85 .
    25. 许磊,李琪,陶雲,余红楚,杜文英,陈泽强,陈能成. 数据驱动的短临降水预报可靠性分析技术体系研究. 时空信息学报. 2023(04): 508-517 .
    26. 贺智,陈逸敏,刘凯. AI时代地理信息科学一流本科专业课程建设探索. 测绘通报. 2023(S2): 60-63 .
    27. 杨学习,邓敏,刘瑜. 社会感知与地理空间智能的研究动态与展望——“社会感知与地理空间智能”专栏导读. 地理与地理信息科学. 2022(01): 1-4 .
    28. 李双成,张文彬,陈立英,梁泽,张雅娟,王铮. 孪生空间及其应用——兼论地理研究空间的重构. 地理学报. 2022(03): 507-517 .
    29. 孔宇,甄峰,张姗琪. 智能技术影响下的城市空间研究进展与思考. 地理科学进展. 2022(06): 1068-1081 .
    30. 刘瑜,郭浩,李海峰,董卫华,裴韬. 从地理规律到地理空间人工智能. 测绘学报. 2022(06): 1062-1069 .
    31. 涂伟,夏吉喆,汪驰升,陆旻,乐阳. 面向智慧城市的空间计算与分析类课程教学模式探索与实践. 测绘地理信息. 2022(S1): 14-17 .
    32. 高嘉良,陆锋,彭澎,徐阳. 基于网络文本迁移学习的旅游知识图谱构建. 武汉大学学报(信息科学版). 2022(08): 1191-1200+1219 .
    33. 武芳,杜佳威,钱海忠,翟仁健. 地图综合智能化研究的发展与思考. 武汉大学学报(信息科学版). 2022(10): 1675-1687 .
    34. 兰锐,陈慧玲,童杨辉. “自然资源大脑”构建关键技术及应用设想. 自然资源信息化. 2022(05): 99-105 .
    35. 慎利,徐柱,李志林,刘万增,崔秉良. 从地理信息服务到地理知识服务:基本问题与发展路径. 测绘学报. 2021(09): 1194-1202 .
    36. 张永生,张振超,童晓冲,纪松,于英,赖广陵. 地理空间智能研究进展和面临的若干挑战. 测绘学报. 2021(09): 1137-1146 .
    37. 艾廷华. 深度学习赋能地图制图的若干思考. 测绘学报. 2021(09): 1170-1182 .

    Other cited types(13)

Catalog

    Article views PDF downloads Cited by(50)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return