-
摘要: 基于时序InSAR函数模型,分别建立了单主影像和多主影像时序InSAR误差模型,在理论上完善了时序InSAR数学模型。利用构建的随机误差模型,模拟试验研究了随机误差模型对时序InSAR待估参数精度的影响。结果表明,与等权模型相比较,加权模型(随机误差模型)估计的参数精度有一定提高;但由于加权条件下的参数估计模型复杂、计算效率低,目前利用等权方法进行时序InSAR的参数估计更简便易行。Abstract: Based on the function model of TS-InSAR (time series interferometric synthetic aperture radar) technique, this paper establishes stochastic function models (weighted/equal-weight) for single-master and multi-master image TS-InSAR method respectively to enrich the mathematical model of TS-InSAR. A simulation test is used to estimate the precision of model parameters for our equal-weighted function model (stochastic model). Compared to the equal-weight model, the precision of deformation parameters shows little improvement over the weighted model. However, complications in the weighted model means that much disk-space is consumed with low computational efficiency. Most computers therefore cannot undertake TS-InSAR analysis tasks with reasonable hardware configuration. At present, the equal-weight model is feasible for TS-InSAR.
-
Keywords:
- TS-InSAR /
- stochastic model /
- parameter estimation
-
致谢: 感谢Kampes博士提供的STUN软件包和张磊博士提供的部分Matlab代码。
-
表 1 等权与加权模型的参数估计误差
Table 1 Parameters Estimation Error by Equal-Weight Model and Weighted Model
最大值 最小值 平均值 均方差 计算耗时/s 单主影像 等权 DEM/m -1.1 0.5 -0.2 0.3 213 形变速率/(mm\5a-1) 0.55 -0.36 0.1 0.16 加权 DEM/m -0.83 0.80 0.02 0.29 731 形变速率/(mm\5a-1) 0.54 -0.33 0.14 0.15 多主影像 等权 DEM/m -3.5 1.5 -0.7 0.7 329 形变速率/(mm\5a-1) -1.1 0.54 -0.17 0.23 加权 DEM/m -3.5 1.8 -0.6 0.7 1 014 形变速率/(mm\5a-1) -1.07 0.58 -0.12 0.22 -
[1] Sandwell D T, Sichoix L. Topographic Phase Recovery From Stacked ERS Interferometry and a Low-Resolution Digital Elevation Model[J]. Journal of Geophysical Research:Solid Earth (1978-2012), 2000, 105(B12):28211-28222
[2] Ferretti A, Prati C, Rocca F. Nonlinear Subsidence Rate Estimation Using Permanent Scatterers in Differential SAR Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5):2202-2212
[3] Usai S. A New Approach for Long Term Monitoring of Deformations by Differential SAR Interferometry[D]. Netherlands:Delft University of Technology, 2001
[4] Berardino P, Fornaro G, Fusco A, et al. A New Approach for Analyzing the Temporal Evolution of Earth Surface Deformations Based on the Combination of DIFSAR Interferograms[C]. IGARSS, Sydney, 2001
[5] Blanco-Sanchez P, Mallorqui J J, Duque S, et al. The Coherent Pixels Technique (CPT):An Advanced Dinsar Technique for Nonlinear Deformation Monitoring[J]. Pure and Applied Geophysics, 2008, 165(6):1167-1193
[6] Zhang L, Ding X, Lu Z. Ground Settlement Monitoring Based on Temporarily Coherent Points Between Two SAR Acquisitions[J]. Journal of Photogrammetry and Remote Sensing, 2011, 66(1):146-152
[7] GonzaLez P J, FernaNdez J. Error Estimation in Multitemporal InSAR Deformation Time Series, with Application to Lanzarote, Canary Islands[J]. Journal of Geophysical Research:Solid Earth (1978-2012), 2011, 116, DOI: 10.1029/2011JB008412
[8] 何平,温扬茂,许才军,等.多时相InSAR技术的廊坊地区地下水体积变化研究[J].武汉大学学报·信息科学版,2012,37(10):1181-1185 He Ping, Wen Yangmao, Xu Caijun, et al. Volume Change of Groundwater in Langfang Region Derived from Multi-temporal InSAR[J]. Geomatics and Information Science of Wuhan University, 2012, 37(10):1181-1185
[9] Hooper A, Zebker H, Segall P, et al. A New Method for Measuring Deformation on Volcanoes and Other Natural Terrains Using InSAR Persistent Scatterers[J]. Geophysical Research Letters, 2004, 31(23):275-295
[10] Kwoun O I, Lu Z, Neal C, et al. Quiescent Deformation of the Aniakchak Caldera, Alaska, Mapped by InSAR[J]. Geology, 2006, 34(1):5-8
[11] Anderssohn J, Motagh M, Walter T R, et al. Surface Deformation Time Series and Source Modeling for a Volcanic Complex System Based on Satellite Wide Swath and Image Mode Interferometry:the Lazufre System, Central Andes[J]. Remote Sensing of Environment, 2009, 113(10):2062-2075
[12] Ketelaar V B H. Satellite Radar Interferometry:Subsidence Monitoring Techniques[M]. Netherlands:Springer, 2009
[13] Kampes B M, Hanssen R F. Ambiguity Resolution for Permanent Scatterers Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(11):2446-2453
[14] Hanssen R F. Radar Interferometry:Data Interpretation and Error Analysis[M]. New York:Springer, 2001
[15] Kampes B M. Radar Interferometry:Persistent Scatterer Technique[M]. New York:Springer, 2006
[16] Sudhaus H, Sigurjon J. Improved Source Modelling Through Combined Use of InSAR and GPS Under Consideration of Correlated Data Errors:Application to the June 2000 Kleifarvatn Earthquake, Iceland[J]. Geophysical Journal International, 2009, 176(2):389-404
[17] 许才军,何平,温扬茂.利用PSInSAR研究意大利Etna火山的地表形变[J].武汉大学学报·信息科学版,2011,36(9):1012-1016 Xu Caijun, He Ping, Wen Yangmao. Surface Deformation of Mt. Etna, Italy from PSInSAR[J]. Geomatics and Information Science of Wuhan University, 2011, 36(9):1012-1016
-
期刊类型引用(12)
1. 明小勇,田义超,张强,陶进,张亚丽,林俊良. 基于Sentinel-1A钦防地区地面沉降监测与分析. 自然资源遥感. 2024(01): 35-48 . 百度学术
2. 周茂桐,张永红,康永辉,吴宏安,魏钜杰. 一种基于结构函数的干涉图筛选方法. 测绘科学. 2024(02): 89-97 . 百度学术
3. 朱军桃,兰荣添,李海林,代程远,林知宇. 基于时序InSAR的厦门市地面沉降监测与分析. 海洋测绘. 2023(05): 56-60+66 . 百度学术
4. 郭伟,陈戈,郭帅,石中计. PS-InSAR技术在安徽省阜南县地面沉降监测中的应用. 安徽地质. 2023(04): 353-358 . 百度学术
5. 何希山,周平,陈刚. 一种联合GACOS与线性大气校正的StaMPS PSI时序分析方法. 测绘通报. 2022(10): 105-109+128 . 百度学术
6. 毕建涛,石振,祝彦敏. 北斗+InSAR技术在大坝变形及周边地质灾害监测中的应用. 卫星应用. 2021(11): 29-33 . 百度学术
7. 王硕,王晨阳,陈常松. 测绘业务与地质灾害监测预警业务之间的融合途径分析. 测绘通报. 2020(11): 151-154 . 百度学术
8. 高二涛,范冬林,付波霖,雍琦,兰艳萍. 基于PS-InSAR和SBAS技术监测南京市地面沉降. 大地测量与地球动力学. 2019(02): 158-163 . 百度学术
9. 肖儒雅,何秀凤. 时序InSAR水库大坝形变监测应用研究. 武汉大学学报(信息科学版). 2019(09): 1334-1341 . 百度学术
10. 余洁,王少华,焦帅,朱琳,常占强,陈蜜. 时空三维相位解缠算法改进研究. 武汉大学学报(信息科学版). 2019(09): 1355-1362 . 百度学术
11. 葛大庆,戴可人,郭兆成,李振洪. 重大地质灾害隐患早期识别中综合遥感应用的思考与建议. 武汉大学学报(信息科学版). 2019(07): 949-956 . 百度学术
12. 蓝秦隆,邹进贵. SBAS技术在地面沉降监测中的应用——以武汉市为例. 测绘通报. 2018(S1): 278-282 . 百度学术
其他类型引用(6)