LIU Yu, ZHAN Zhaohui, ZHU Di, CHAI Yanwei, MA Xiujun, WU Lun. Incorporating Multi-source Big Geo-data to Sense Spatial Heterogeneity Patterns in an Urban Space[J]. Geomatics and Information Science of Wuhan University, 2018, 43(3): 327-335. DOI: 10.13203/j.whugis20170383
Citation: LIU Yu, ZHAN Zhaohui, ZHU Di, CHAI Yanwei, MA Xiujun, WU Lun. Incorporating Multi-source Big Geo-data to Sense Spatial Heterogeneity Patterns in an Urban Space[J]. Geomatics and Information Science of Wuhan University, 2018, 43(3): 327-335. DOI: 10.13203/j.whugis20170383

Incorporating Multi-source Big Geo-data to Sense Spatial Heterogeneity Patterns in an Urban Space

Funds: 

The Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Land and Resources KF-2016-02-023

the National Natural Science Foundation of China 41625003

More Information
  • Author Bio:

    LIU Yu, PhD, professor, specializes in GIScience and big geo-data. E-mail: liuyu@urban.pku.edu.cn

  • Corresponding author:

    WU Lun, PhD, professor.E-mail: lwu@urban.pku.edu.cn

  • Received Date: November 22, 2017
  • Published Date: March 04, 2018
  • Multi-source big geo-data provides us an unprecedented opportunity to investigate geographic phenomena from perspective of their spatial distribution patterns, spatial interactions and dynamic evolution. Cities are the most concentrated areas of human activities and thus massive amount of geographic big data have been produced to improve our understanding of urban spaces. The spatial heterogeneity patterns in cities is an essential topic in geographic research and urban planning. Social sensing offers an analytical framework to characterize urban spatial heterogeneity from four dimensions:human, environment, statics and dynamics. This paper summarizes the contributions of different types of big geo-data in characterizing urban features. Borrowing the concept of "niche model" from ecological studies, a case study is introduced to demonstrate the quantification of spatial heterogeneity patterns in urban space incorporating multi-source big geo-data. Theoretical issues such as unit selection are also discussed to address some related problems.
  • [1]
    Goodchild M F. Citizens as Sensors:The World of Volunteered Geography[J]. Geo Journal, 2007, 69(4):211-221 https://www.researchgate.net/publication/225919690_Citizens_as_Sensors_The_World_of_Volunteered_Geography
    [2]
    Miller H J, Goodchild M F. Data-Driven Geography[J].Geo Journal, 2015, 80(4):449-461 https://u.osu.edu/miller.81/2014/10/13/data-driven-geography
    [3]
    Liu Y, Liu X, Gao S, et al. Social Sensing:A New Approach to Understanding our Socioeconomic Environments[J]. Annals of the Association of American Geographers, 2015, 105(3):512-530 doi: 10.1080/00045608.2015.1018773
    [4]
    刘瑜.社会感知视角下的若干人文地理学基本问题再思考[J].地理学报, 2016, 71(4):564-575 http://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201604004.htm

    Liu Yu. Revisiting Several Basic Geographical Concepts:A Social Sensing Perspective[J]. Acta Geographica Sinica, 2016, 71(4):564-575 http://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201604004.htm
    [5]
    Ratti C, Frenchman D, Pulselli R M, et al.Mobile Landscapes:Using Location Data from Cell Phones for Urban Analysis[J]. Environment and Planning B:Planning and Design, 2006, 33(5):727-748 doi: 10.1068/b32047
    [6]
    Liu Y, Wang F, Xiao Y, et al. Urban Land Uses and Traffic 'Source Sink Areas':Evidence from GPS-enabled Taxi Data in Shanghai[J]. Landscape and Urban Planning, 2012, 106(1):73-87 doi: 10.1016/j.landurbplan.2012.02.012
    [7]
    Pei T, Sobolevsky S, Ratti C, et al. A New Insight into Land Use Classification Based on Aggregated Mobile PhoneData[J]. International Journal of Geographical Information Science, 2014, 28(9):1988-2007 doi: 10.1080/13658816.2014.913794
    [8]
    Lansley G, Longley P A. The Geography of Twitter Topics in London[J]. Computers, Environment and Urban Systems, 2016, 58:85-96 doi: 10.1016/j.compenvurbsys.2016.04.002
    [9]
    Jendryke M, Balz T, McClure S C, et al. Putting People in the Picture:Combining Big Location-based Social Media Data and Remote Sensing Imagery for Enhanced Contextual Urban Information in Shanghai[J]. Computers, Environment and Urban Systems, 2017, 62:99-112 doi: 10.1016/j.compenvurbsys.2016.10.004
    [10]
    Liu X, He J, Yao Y, et al. Classifying Urban Land Use by Integrating Remote Sensing and Social Media Data[J].International Journal of Geographical Information Science, 2017, 31(8):1675-1696 doi: 10.1080/13658816.2017.1324976
    [11]
    Long Y, Shen Z. Geospatial Analysis to Support Urban Planning in Beijing[M].Switzerland:GeoJournal Library, 2015
    [12]
    Shi L, Chi G, Liu X, et al. Human Mobility Patterns in Different Communities:A Mobile Phone Data-Based Social Network Approach[J].Annals of GIS, 2015. 21(1):15-26 doi: 10.1080/19475683.2014.992372
    [13]
    Kang C, Liu Y, Ma X, et al. Towards Estimating Urban Population Distributions from Mobile Call Data[J]. Journal of Urban Technology.2012, 19(4):3-21 doi: 10.1080/10630732.2012.715479
    [14]
    Deville P, Linard C, Martin S, et al. Dynamic Population Mapping Using Mobile Phone Data[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(45):15888-15893 doi: 10.1073/pnas.1408439111
    [15]
    Mitchell L, Frank M, Harris, K, et al. The Geography of Happiness:Connecting Twitter Sentiment and Expression, Demographics, and Objective Characteristics of Place[J]. PLoS ONE, 2013, DOI: 10.1371/journal.pone.0064417
    [16]
    Yang W, Mu L. GIS Analysis of Depression among Twitter Users[J]. Applied Geography, 2015, 60:217-223 doi: 10.1016/j.apgeog.2014.10.016
    [17]
    Liu L, Zhou B, Zhao J, et al. C-IMAGE:City Cognitive Mapping through Geo-tagged Photos[J].GeoJournal, 2016, 81:817-861 doi: 10.1007/s10708-016-9739-6
    [18]
    Li X, Zhang C, Li W. Building Block Level Urban Land-use Information Retrieval Based on Google Street View Images[J]. GIScience & Remote Sensing, 2017, 54(6):819-835 https://www.researchgate.net/publication/317596342_Building_block_level_urban_land-use_information_retrieval_based_on_Google_Street_View_images
    [19]
    Zhong C, Arisona S M, Huang X, et al. Detecting the Dynamics of Urban Structure through Spatial Network Analysis[J]. International Journal of Geographical Information Science, 2014, 28(11):2178-2199 doi: 10.1080/13658816.2014.914521
    [20]
    Liu X, Gong L, Gong Y, et al. Revealing Travel Patterns and City Structure with Taxi Trip Data[J]. Journal of Transport Geography, 2015, 43:78-90 doi: 10.1016/j.jtrangeo.2015.01.016
    [21]
    Liu X, Kang C, Gong L, et al. Incorporating Spatial Interaction Patterns in Classifying and Understanding Urban Land Use[J]. International Journal of Geographical Information Science, 2016, 30(2):334-350 doi: 10.1080/13658816.2015.1086923
    [22]
    Zhao Z, Shaw S L, Xu Y, et al. Understanding the Bias of Call Detail Records in Human Mobility Research[J]. International Journal of Geographical Information Science, 2016, 30(9):1738-1762 doi: 10.1080/13658816.2015.1137298
    [23]
    Grinnell J. Presence and Absence of Animals[M]. Berkeley:University of California Chronicle Press, 1928
    [24]
    Cai H, Zhan X, Zhu J, et al. Understanding Taxi Travel Patterns[J]. Physica A:Statistical Mechanics and its Applications, 2016, 457:590-597 doi: 10.1016/j.physa.2016.03.047
    [25]
    Breiman L.Random Forests[J].Machine Learning, 2001, 45(1):5-32 doi: 10.1023/A:1010933404324
    [26]
    Openshaw S. TheModifiable Areal Unit Problem[M].Norwick:Geo Books, 1983
    [27]
    Armhein C. Searching for the Elusive Aggregation Effect:Evidence from Statistical Simulations[J].Environment & Planning A, 1995, 27(1):105-119 doi: 10.1068/a270105
    [28]
    Reades J, Calabrese F, Ratti, C. Eigenplaces:Analysing Cities Using the Space-Time Structure of the Mobile Phone Network[J]. Environment and Planning B:Planning and Design, 2009, 36:824-836 doi: 10.1068/b34133t
    [29]
    Toole J L, Ulm M, Gonzale Z, et al. Inferring Land Use from Mobile Phone Activity[C]. The ACM SIGKDD International Workshop on Urban Computing, Beijing, 2012
    [30]
    Zhu D, Wang N, Wu L, et al. Street as a Big Geo-Data Assembly and Analysis Unit in Urban Studies:A Case Study Using Beijing Taxi Data[J]. Applied Geography, 2017, 86:152-164 doi: 10.1016/j.apgeog.2017.07.001
  • Related Articles

    [1]HU Deyong, QIAO Kun, WANG Xingling, ZHAO Limin, JI Guohua. Comparison of Three Single-window Algorithms for Retrieving Land-Surface Temperature with Landsat 8 TIRS Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 869-876. DOI: 10.13203/j.whugis20150164
    [2]FENG Qi, CHENG Xuejun, SHEN Xin, XIAO Xiao, WANG Lihui, ZHANG Wen. Inland Riverine Turbidity Estimation for Hanjiang River with Landsat 8 OLI Imager[J]. Geomatics and Information Science of Wuhan University, 2017, 42(5): 643-647. DOI: 10.13203/j.whugis20141002
    [3]WANG Yuzhuo, LIU Xiuguo, ZHANG Wei. Raster River Networks Extraction Based on Parallel Multiple Flow Direction Algorithms[J]. Geomatics and Information Science of Wuhan University, 2015, 40(12): 1646-1652,1682. DOI: 10.13203/j.whugis20140645
    [4]LI Yuguang, LI Qingquan. A Fast Algorithm for Huge Volume Floating Car Data Map-Matching:A Vector to Raster Map Conversion Approach[J]. Geomatics and Information Science of Wuhan University, 2014, 39(6): 724-728. DOI: 10.13203/j.whugis20140071
    [5]DONG Jian, PENG Rencan, CHEN Yi, LI Ning. An Algorithm for Centre Line Generation Based on Model of Approaching Intersection of Buffering Borderline from Reciprocal Direction[J]. Geomatics and Information Science of Wuhan University, 2011, 36(9): 1120-1123.
    [6]ZHANG Junfeng, FEI Lifan, HUANG Lina, LIU Yining. Real-Time Dynamic Rendering Algorithm of Terrain Using 3D_DP Method and Quad_TIN Model[J]. Geomatics and Information Science of Wuhan University, 2011, 36(3): 346-350.
    [7]LAN Qiuping, FEI Lifan, LIU Yining. An Approach on Calculating Firn Volume Change from Multi-temporal DEMs[J]. Geomatics and Information Science of Wuhan University, 2010, 35(10): 1222-1225.
    [8]HUANG Lina, FEI Lifan. Experimental Investigation on the Three Dimension Generalization of Contour Lines using 3D D-P Algorithm[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 55-58.
    [9]YAN Huiwu, ZHU Guorui, XU Zhiyong, GAO Shan. Volume Rendering and 3D Modeling of Hydrogeologic Layer Based on Kriging Algorithm[J]. Geomatics and Information Science of Wuhan University, 2004, 29(7): 611-614.
    [10]CHENG Penggen, GONG Jianya, SHI Wenzhong, LIU Shaohua. Geological Object Modeling Based on Quasi Tri-prism Volume and Its Application[J]. Geomatics and Information Science of Wuhan University, 2004, 29(7): 602-307.
  • Cited by

    Periodical cited type(17)

    1. 冉烽均,龚川. 基于OpenStreetMap数据的土地利用制图. 北京测绘. 2024(02): 238-244 .
    2. 樊潇. 以建立草原公园为抓手,推动牧区草原转型升级. 中国草食动物科学. 2022(01): 61-64 .
    3. 李霞,潘冬荣,孙斌,姜佳昌,俞慧云,王红霞,杜笑村,吴丹丹. 甘肃省草地退化概况分析——基于甘肃省第一、二次草原普查数据. 草业科学. 2022(03): 485-494 .
    4. 刘志刚,关文昊,何国兴,蒲小鹏,纪童,杨军银,李强,柳小妮. 黄河源5种高寒植物光谱特征分析及识别. 草原与草坪. 2022(04): 23-30 .
    5. 申紫雁,刘昌义,胡夏嵩,周林虎,许桐,李希来,李国荣. 黄河源区高寒草地不同深度土壤理化性质与抗剪强度关系研究. 干旱区研究. 2021(02): 392-401 .
    6. 王俊奇,王广军,梁四海,杜海波,彭红明. 1996—2015年黄河源区植被覆盖度提取和时空变化分析. 冰川冻土. 2021(02): 662-674 .
    7. 朱宁,王浩,宁晓刚,刘娅菲. 草地退化遥感监测研究进展. 测绘科学. 2021(05): 66-76 .
    8. 沈贝贝,侯路路,丁蕾,范蓓蕾,毛平平,徐大伟,闫瑞瑞,辛晓平,陈金强. 数字牧场研究进展浅析. 中国农业信息. 2021(05): 1-11 .
    9. 刘炜,孙海霞,杨晓波. 基于高光谱图像的协同分层波谱识别——以兰州、榆林地区为例. 红外与毫米波学报. 2020(01): 99-110 .
    10. 韩万强,靳瑰丽,岳永寰,王惠宁,宫珂,吴雪儿,吾鲁帕·阿得尔卡里. 伊犁绢蒿荒漠草地3种主要植物光谱及植被指数改进. 新疆农业科学. 2020(05): 950-957 .
    11. 刘炜,孙海霞,杨晓波,董建民. 对数变换、导数变换的高寒草地反射光谱特征分析与识别——以那曲地区HJ-1A/HSI图像为例. 光谱学与光谱分析. 2020(07): 2200-2207 .
    12. 董元,董梦,单莹. 基于高光谱遥感的树种识别. 华北理工大学学报(自然科学版). 2020(04): 11-16 .
    13. 付晶莹,彭婷,江东,林刚,边鹏,韩昊. 草地资源立体观测研究进展与理论框架. 资源科学. 2020(10): 1932-1943 .
    14. 苏玥. 基于遥感的草地退化研究综述. 内蒙古科技与经济. 2019(06): 53-54+56 .
    15. 查向浩,王玉洁,李有文,王超,莫治新. 草地土壤碳密度研究进展. 北方园艺. 2019(09): 159-163 .
    16. 王云艳,罗冷坤,周志刚. 改进型DeepLab的极化SAR果园分类. 中国图象图形学报. 2019(11): 2035-2044 .
    17. 张良培,刘蓉,杜博. 使用量子优化算法进行高光谱遥感影像处理综述. 武汉大学学报(信息科学版). 2018(12): 1811-1818 .

    Other cited types(9)

Catalog

    Article views (3370) PDF downloads (1273) Cited by(26)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return