WANG Leyang, ZHAO Xiong, GAO Hua. A Two-Step Solution Method for the Co-seismic Slip Distribution Inversion of Earthquake Faults in Geodesy[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9): 1265-1273, 1311. DOI: 10.13203/j.whugis20170382
Citation: WANG Leyang, ZHAO Xiong, GAO Hua. A Two-Step Solution Method for the Co-seismic Slip Distribution Inversion of Earthquake Faults in Geodesy[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9): 1265-1273, 1311. DOI: 10.13203/j.whugis20170382

A Two-Step Solution Method for the Co-seismic Slip Distribution Inversion of Earthquake Faults in Geodesy

Funds: 

The National Natural Science Foundation of China 41874001

The National Natural Science Foundation of China 41664001

the Support Program for Outstanding Youth Talents in Jiangxi Province 20162BCB23050

the National Key Research and Development Program of China 2016YFB0501405

More Information
  • Author Bio:

    WANG Leyang, PhD, professor, specializes in geodetic inversion and geodetic data processing. E-mail: wleyang@163.com

  • Received Date: August 15, 2018
  • Published Date: September 04, 2019
  • As for the ill-posed coefficient matrix in the process of co-seismic slip distribution inversion, a two-step solution method is proposed, and the Laplace second-order smoothing matrix is used for smoothing constraint in this paper. This method not only solves the ill-posed problem of the coefficient matrix, but also suppresses the large gradient variation between adjacent fault patches. During the inversion process of two-step solution method, the L curve method is used to determine the regularization parameters. In this paper, systematic simulation experiments are carried out and the Lushan earthquake is used as an actual earthquake case. The maximum slip inversion results of simulation experiments show that the inversion result of two-step solution method has been improved between 3.34% and 19% than that of one-step solution method in accuracy. The root mean square error inversion result of two-step method is less between 3.3% and 13.3% than that of one-step solution method. The inversion results of the Lushan earthquake show that it is feasible to use the two-step solution for slip distribution inversion.
  • [1]
    许才军, 邓长勇, 周力璇.利用方差分量估计的地震同震滑动分布反演[J].武汉大学学报·信息科学版, 2016, 41(1):37-44 http://ch.whu.edu.cn/CN/abstract/abstract3431.shtml

    Xu Caijun, Deng Changyong, Zhou Lixuan. Coseismic Slip Distribution Inversion Method Based on Variance Component Estimation[J]. Geomatics and Information Science of Wuhan University, 2016, 41(1):37-44 http://ch.whu.edu.cn/CN/abstract/abstract3431.shtml
    [2]
    Funning G, Parsons B, Wright T, et al. Surface Displacements and Source Parameters of the 2003 Bam (Iran) Earthquake from Envisat Advanced Synthetic Aperture Radar Imagery[J]. Journal of Geophysical Research:Solid Earth, 2005, 110(B9):1-23 doi: 10.1029/2004JB003338/full
    [3]
    许才军, 刘洋, 温扬茂.利用GPS资料反演汶川Mw7.9级地震滑动分布[J].测绘学报, 2009, 38(3):195-201 doi: 10.3321/j.issn:1001-1595.2009.03.002

    Xu Caijun, Liu Yang, Wen Yangmao. Mw7.9 Wenchuan Earthquake Slip Distribution Inversion from GPS Measurements[J]. Acta Geodaetica et Cartographica Sinica, 2009, 38(3):195-201 doi: 10.3321/j.issn:1001-1595.2009.03.002
    [4]
    张国宏, 屈春燕, 宋小刚, 等.基于InSAR同震形变场反演汶川Mw7.9地震断层滑动分布[J].地球物理学报, 2010, 53(2):269-279 doi: 10.3969/j.issn.0001-5733.2010.02.005

    Zhang Guohong, Qu Chunyan, Song Xiaogang, et al. Slip Distribution and Source Parameters Inverted from Coseismic Deformation Derived by InSAR Technology of Wenchuan Mw7.9 Earthquake[J]. Chinese Journal of Geophysics, 2010, 53(2):269-279 doi: 10.3969/j.issn.0001-5733.2010.02.005
    [5]
    Jiang Z, Wang M, Wang Y, et al. GPS Constrained Coseismic Source and Slip Distribution of the 2013 Mw6.6 Lushan, China, Earthquake and Its Tectonic Implications[J]. Geophysical Research Letters, 2014, 41(2):407-413 doi: 10.1002/2013GL058812
    [6]
    Okada Y. Surface Deformation to Shear and Tensile Faults in a Half Space[J]. Bulletin of the Seismological Society of America, 1985, 75(4):1135-1154 http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=ssabull&resid=75/4/1135
    [7]
    Okada Y. Internal Deformation Due to Shear and Tensile Fault in a Half Space[J]. Bulletin of the Seismological Society of America, 1992, 92(2):1018-1040 http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=ssabull&resid=75/4/1135
    [8]
    孙建宝, 徐锡伟, 沈正康, 等.基于线弹性位错模型及干涉雷达同震形变场反演1997年玛尼Mw7.5级地震参数-Ⅰ均匀滑动反演[J].地球物理学报, 2007, 50(4):1097-1110 doi: 10.3321/j.issn:0001-5733.2007.04.017

    Sun Jianbao, Xu Xiwei, Shen Zhengkang, et al. Parameter Inversion of the 1997 Mani Earthquake from InSAR Co-seismic Deformation Field Based on Linear Elastic Dislocation Model-Ⅰ Uniform Slip Inversion[J]. Chinese Journal of Geophysics, 2007, 50(4):1097-1110 doi: 10.3321/j.issn:0001-5733.2007.04.017
    [9]
    王乐洋, 许才军, 温扬茂.利用STLN和InSAR数据反演2008年青海大柴旦Mw6.3级地震断层参数[J].测绘学报, 2013, 42(2):168-176 http://d.old.wanfangdata.com.cn/Periodical/chxb201302002

    Wang Leyang, Xu Caijun, Wen Yangmao. Fault Parameters of 2008 Qinghai Dachaidan Mw6.3 Earthquake from STLN Inversion and InSAR Data[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(2):168-176 http://d.old.wanfangdata.com.cn/Periodical/chxb201302002
    [10]
    王乐洋, 李海燕, 温扬茂, 等.地震同震滑动分布反演的总体最小二乘方法[J].测绘学报, 2017, 46(3):307-315 http://d.old.wanfangdata.com.cn/Periodical/chxb201703006

    Wang Leyang, Li Haiyan, Wen Yangmao, et al. Total Least Squares Method Inversion for Co-seismic Slip Distribution[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(3):307-315 http://d.old.wanfangdata.com.cn/Periodical/chxb201703006
    [11]
    王乐洋.基于总体最小二乘的大地测量反演理论及应用研究[D].武汉: 武汉大学, 2011 http://www.cqvip.com/QK/90069X/201204/42958757.html

    Wang Leyang. Research on Theory and Application of Total Least Squares in Geodetic Inversion[D]. Wuhan: Wuhan University, 2011 http://www.cqvip.com/QK/90069X/201204/42958757.html
    [12]
    王乐洋, 许才军, 鲁铁定.病态加权总体最小二乘平差的岭估计解法[J].武汉大学学报·信息科学版, 2010, 35(11):1346-1350 http://ch.whu.edu.cn/CN/abstract/abstract1110.shtml

    Wang Leyang, Xu Caijun, Lu Tieding. Ridge Estimation Method in Ill-posed Weight Total Least Squares Adjustment[J]. Geomatics and Information Science of Wuhan University, 2010, 35(11):1346-1350 http://ch.whu.edu.cn/CN/abstract/abstract1110.shtml
    [13]
    王乐洋, 于冬冬.病态总体最小二乘问题的虚拟观测解法[J].测绘学报, 2014, 43(6):575-581 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chxb201406004

    Wang Leyang, Yu Dongdong. Virtual Observation Method to Ill-posed Total Least Squares Problem[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(6):575-581 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chxb201406004
    [14]
    Fan Q, Xu C, Yi L, et al. Implication of Adaptive Smoothness Constraint and Helmert Variance Component Estimation in Seismic Slip Inversion[J]. Journal of Geodesy, 2017, 91(10):1163-1177 doi: 10.1007/s00190-017-1015-0
    [15]
    王振杰, 欧吉坤, 柳林涛.一种解算病态问题的方法——两步解法[J].武汉大学学报·信息科学版, 2005, 30(9):821-824 http://ch.whu.edu.cn/CN/abstract/abstract2283.shtml

    Wang Zhenjie, Ou Jikun, Liu Lintao. A Method for Solving Ill-posed Problems-Two Step Method[J]. Geomatics and Information Science of Wuhan University, 2005, 30(9):821-824 http://ch.whu.edu.cn/CN/abstract/abstract2283.shtml
    [16]
    Jonsson S. Fault Slip Distribution of the 1999 Mw7.1 Hector Mine, California, Earthquake, Estimated from Satellite Radar and GPS Measurements[J]. Bulletin of the Seismological Society of America, 2002, 92(4):1377-1389 doi: 10.1785/0120000922
    [17]
    王振杰, 欧吉坤.用L-曲线法确定岭估计中的岭参数[J].武汉大学学报·信息科学版, 2004, 29(3):235-238 http://ch.whu.edu.cn/CN/abstract/abstract4657.shtml

    Wang Zhenjie, Ou Jikun. Determination of Ridge Parameters in Ridge Estimation by L-Curve Method[J]. Geomatics and Information Science of Wuhan University, 2004, 29(3):235-238 http://ch.whu.edu.cn/CN/abstract/abstract4657.shtml
    [18]
    Hansen P, O'Leary D. The Use of the L-Curve in the Regularization of Discrete Ill-posed Problems[J]. SIAM Journal on Scientific Computing, 1993, 14(6):1487-1503 doi: 10.1137/0914086
    [19]
    杨文采.地球物理反演和地震层析成象[M].北京:地质出版社, 1989

    Yang Wencai. Geophysical Inversion and Seismic Tomography[M]. Beijing:Geological Publishing House, 1989
    [20]
    Wang C, Ding X, Li Q, et al. Adaptive Regularization of Earthquake Slip Distribution Inversion[J]. Tectonophysics, 2016, 675:181-195 doi: 10.1016/j.tecto.2016.03.018
    [21]
    刘云华, 汪驰升, 单新建, 等.芦山Ms7.0级地震InSAR形变观测及震源参数反演[J].地球物理学报, 2014, 57(8):2495-2506 http://www.cqvip.com/QK/94718X/20148/662244307.html

    Liu Yunhua, Wang Chisheng, Shan Xinjian, et al. Result of SAR Differential Interferometry for the Co-seismic Deformation and Source Parameter of the Ms7.0 Lushan Earthquake[J]. Chinese Journal of Geophysics, 2014, 57(8):2495-2506 http://www.cqvip.com/QK/94718X/20148/662244307.html
    [22]
    王卫民, 郝金来, 姚振兴. 2013年四川芦山地震震源破裂过程反演初步结果[J].地球物理学报, 2013, 56(4):1412-1417 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201304036

    Wang Weimin, Hao Jinlai, Yao Zhenxing. Preliminary Result for Rupture Process of 2013, Lushan Earthquake, Sichuan, China[J]. Chinese Journal of Geophysics, 2013, 56(4):1412-1417 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201304036
    [23]
    Wang M, Jia D, Shaw J, et al. The 2013 Lushan Earthquake:Implications for Seismic Hazards Posed by the Range Front Blind Thrust in the Sichuan Basin, China[J]. Geology, 2014, 42(10):915-918 doi: 10.1130/G35809.1

Catalog

    Article views (1483) PDF downloads (387) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return