JIANG Ying, HU Xiaogang. Investigation of High-Frequency Noise for Superconducting Gravimeters of China Using Normal Modes of Lushan Earthquake[J]. Geomatics and Information Science of Wuhan University, 2017, 42(5): 583-588. DOI: 10.13203/j.whugis20140857
Citation: JIANG Ying, HU Xiaogang. Investigation of High-Frequency Noise for Superconducting Gravimeters of China Using Normal Modes of Lushan Earthquake[J]. Geomatics and Information Science of Wuhan University, 2017, 42(5): 583-588. DOI: 10.13203/j.whugis20140857

Investigation of High-Frequency Noise for Superconducting Gravimeters of China Using Normal Modes of Lushan Earthquake

Funds: 

The National Natural Science Foundation of China Nos. 41174022

The National Natural Science Foundation of China 41021003

The National Natural Science Foundation of China 41404064

the Open Research Fund Program of State Key Laboratory of Geodesy and Earth's Dynamics No. SKLGED2015-1-2-EZ

More Information
  • Author Bio:

    JIANG Ying, PhD, specializes in Earth's free oscillations, gravity data analysis and its application. E-mail: jiangyingchen@126.com

  • Corresponding author:

    HU Xiaogang, PhD, research fellow. E-mail:hxg432@whigg.ac.cn

  • Received Date: March 22, 2016
  • Published Date: May 04, 2017
  • Given the very low instrumental noise at frequencies below 1 mHz, the superconducting Gravimeter (SG) is a highly sensitive and stable gravimeter for observations of the Earth's tides. As a new generation of SGs is widely used in observations and research on changes of gravity caused by activity in the interior Earth in recent years, the noise level of SGs at high frequency recording band is receiving more and more attention. Weak signals from the free oscillations of the Earth can help us directly investigate the capability of SGs to contribute to geodynamics research. The Lushan Mw6.6 earthquake, on 20 April 2013 in Sichuan, China, generated weak spheroidal modes in 2~8 mHz. We investigated the normal modes recorded by 5 SGs of mainland China, and computed the synthetic normal modes according to the theory of double couple centroid moment tensor based the spherical, non-rotating, elastic and isotropic (SNREI) Earth model. The results show that at the 2~5 mHz frequency band, the SG057 at the Lhasa station, the SG053 and the portable SG (iGrav) at the Wuhan station had a low noise level; the SG65 at Wuhan station and SG66 at Lijiang station had a high noise level. The test method and results can provide the reference when studying the high-frequency noise level of a gravimeter for clearing the application range.
  • [1]
    Crossley D, Hinderer J. GGP (Global Geodynamics Project):An International Network of Superconducting Gravimeters to Study Time-Variable Gravity[J]. International Association of Geodesy Symposia, 2009, 135:627-635 https://www.researchgate.net/publication/225261418_GGP_Global_Geodynamics_Project_An_International_Network_of_Superconducting_Gravimeters_to_Study_Time-Variable_Gravity
    [2]
    贾剑钢, 栾威, 申文斌. iGrav-007超导重力仪的性能分析及对球型自由振荡模态0Sm的检测[J].武汉大学学报·信息科学版, 2015, 40(12):1683-1690 http://ch.whu.edu.cn/CN/abstract/abstract3399.shtml

    Jia Jiangang, Luan Wei, Shen Wenbin. iGrav-007 SG and Detection of the Spherical Free Oscillation Modes 0Sm[J]. Geomatics and Information Science of Wuhan University, 2015, 40(12):1683-1690) http://ch.whu.edu.cn/CN/abstract/abstract3399.shtml
    [3]
    贾剑钢, 栾威, 申文斌. iGrav-007超导重力仪格值的精密测定[J].武汉大学学报·信息科学版, 2015, 40(10):1366-1370 http://ch.whu.edu.cn/CN/abstract/abstract3349.shtml

    Jia Jiangang, Luan Wei, Shen Wenbin. Accurate Determination of the Calibration Factor of iGrav-007 Superconducting Gravimeter[J]. Geomatics and Information Science of Wuhan University, 2015, 40(10):1366-1370 http://ch.whu.edu.cn/CN/abstract/abstract3349.shtml
    [4]
    崔荣花, 方剑, 王新胜. 2009-07-22湖北地区日全食期间的重力观测[J].武汉大学学报·信息科学版, 2011, 36(11):1332-1335 http://ch.whu.edu.cn/CN/abstract/abstract700.shtml

    Cui Ronghua, Fang Jian, Wang Xinsheng. Gravity Observations During 22 July 2009 Total Solar Eclipse in Hubei Province[J]. Geomatics and Information Science of Wuhan University, 2011, 36(11):1332-1335 http://ch.whu.edu.cn/CN/abstract/abstract700.shtml
    [5]
    申文斌, 刘任莉.利用超导重力数据探测内核超速旋转的研究[J].武汉大学学报·信息科学版, 2009(1):72-76 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200901018.htm

    Shen Wenbin, Liu Renli. Study of Detecting the Inner Core Super Rotation Using SG Data[J]. Geomatics and Information Science of Wuhan University, 2009(1):72-76 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200901018.htm
    [6]
    叶志伟, 尹晖, 张守建. AR模型谱在超导重力数据信号检测中的分析研究[J].武汉大学学报·信息科学版, 2007, 32(6):536-539 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200706017.htm

    Ye Zhiwei, Yin Hui, Zhang Shoujian. Using AR Model Spectrum Algorithms to Detect Superconducting Gravimetric Signals[J]. Geomatics and Information Science of Wuhan University, 2007, 32(6):536-539 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200706017.htm
    [7]
    许厚泽, 孙和平.国际GGP计划和武汉超导重力仪观测[J].武汉大学学报·信息科学版, 2003(S1):1-4 http://ch.whu.edu.cn/CN/abstract/abstract4734.shtml

    Xu Houze, Sun Heping. GGP Project and Observations Using Wuhan Superconducting Gravimeter[J]. Geomatics and Information Science of Wuhan University, 2003(S1):1-4 http://ch.whu.edu.cn/CN/abstract/abstract4734.shtml
    [8]
    Peterson J. Observation and Modeling of Seismic Background Noise[J]. U S Geological Survey, Open-File Reports, 1993, 45(1):93-322
    [9]
    Banka D, Crossley D. Noise Levels of Superconducting Gravimeters at Seismic Frequencies[J].Geophysical Journal International, 1999, 139(1):87-97 doi: 10.1046/j.1365-246X.1999.00913.x
    [10]
    Rosat S, Hinderer J, Crossley D. A Comparison of the Seismic Noise Levels at Various GGP Stations[J]. BullInf Marées Terrestres, 2002, 135:10689-10700
    [11]
    Widmer R. What Can Superconducting Contribute to Normal Mode Seismology?[J]. Bulletins of Seismological of America, 2003, 93(3):1370-1380 doi: 10.1785/0120020149
    [12]
    Hu X, Liu L, Sun H, et al. Wavelet Filter Analysis of Splitting and Coupling of Seismic Normal Modes Below 1.5 mHz with Superconducting Gravimeters After the December 26, 2004 Sumatra Earthquake[J]. Science in China Series D:Earth Sciences, 2006, 49:1259-1269
    [13]
    Jiang Y, Hu X, Liu C, et al. Constraining Focal Mechanism of Lushan Earthquake by Observations of the Earth's Free Oscillation[J]. Science China:Earth Sciences, 2014, 57(9):2064-2070 doi: 10.1007/s11430-014-4913-5
    [14]
    Hu X, Jiang Y, Sun H. Assessing the Scalar Moment of Moderate Earthquake and the Effect of Lateral Heterogeneity on Normal Modes:An Example from the 2013-04-20 Lushan Earthquake, Sichuan, China on 20 April, 2013[J]. Physics of the Earth and Planetary Interiors, 2014, 232:61-71 doi: 10.1016/j.pepi.2014.04.005
    [15]
    Liu C L, Yong Z, Can G E, et al. Rupture Process of the Ms 7.0 Lushan Earthquake, 2013[J]. Science China Earth Sciences, 2013, 56(7):1187-1192 doi: 10.1007/s11430-013-4639-9
    [16]
    Shan B, Xiong X, Zheng Y, et al. Stress Changes on Major Faults Caused by 2013 Lushan Earthquake and Its Relationship with 2008 Wenchuan Earthquake[J]. Science China Earth Science, 2013, 56(7):1169-1176 doi: 10.1007/s11430-013-4642-1
    [17]
    Xie Z J, Jin B K, Yong Z, et al. Source Parameters Inversion of the 2013 Lushan Earthquake by Combining Teleseismic Waveforms and Local Seismograms[J]. Science China Earth Science, 2013, 56(7):1177-1186 doi: 10.1007/s11430-013-4640-3
    [18]
    Zheng Y, Ge C, Xie Z J, et al. Crustal and Upper Mantle Structure and the Deep Seismogenic Environment in the Source Regions of the Lushan Earthquake and the Wenchuan Earthquake[J]. Science China Earth Sciences, 2013, 56(7):1158-1168 doi: 10.1007/s11430-013-4641-2
    [19]
    刘杰, 易桂喜, 张致伟, 等. 2013年4月20日四川芦山M7.0级地震介绍[J].地球物理学报, 2013, 56(4):1404-1407 doi: 10.6038/cjg20130434

    Liu Jie, Yi Guixi, Zhang Zhiwei, et al. Introduction to the Lushan, Sichuan M7.0 Earthquake on 20 April 2013[J]. Chin J Geophys, 2013, 56(4):1404-1407 doi: 10.6038/cjg20130434
    [20]
    王卫民, 郝金来, 姚振兴. 2013年4月20日四川芦山地震震源破裂过程反演初步结果[J].地球物理学报, 2013, 56(4):1412-1417 doi: 10.6038/cjg20130436

    Wang Weimin, Hao Jinlai, Yao Zhenxing. Preliminary Result for Rupture Processof Apr.20, 2013 Lushan Earthquake, Sichuan[J]. China Chin J Geophys, 2013, 56(4):1412-1417 doi: 10.6038/cjg20130436
    [21]
    曾祥方, 罗艳, 韩立波, 等. 2013年4月20日四川芦山Ms 7.0地震:一个高角度逆冲地震[J].地球物理学报, 2013, 56(4):1418-1424 doi: 10.6038/cjg20130437

    Zeng Xiangfang, Luo Yan, Han Libo, et al. The Lushan Ms 7.0 Earthquake on 20 April 2013:A High-Angle Thrust Event[J]. Chin J Geophys, 2013, 56(4):1418-1424 doi: 10.6038/cjg20130437
    [22]
    van Camp M, Vauterin P. Tsoft:Graphical and Interactive Software for the Analysis of Time Series and Earth Tides[J]. Comput Geosci, 2005, 31(5):631-640 doi: 10.1016/j.cageo.2004.11.015
    [23]
    Zurn W, Widmer R. On Noise Reduction in Vertical Seismic Records Below 2 mHz Using Local Barometric Pressure[J]. Geophys Re Lett, 1995, 22:3537-3540 doi: 10.1029/95GL03369
    [24]
    Hu X G, Liu L T, Hinderer J, et al. Wavelet Filter Analysis of Atmospheric Pressure Effects in the Long-period Seismic Mode Band[J]. Phys Earth Planet Inter, 2006, 154:70-84 doi: 10.1016/j.pepi.2005.09.003
    [25]
    Hu X G, Liu L T, Hinderer J, et al. Wavelet Filter Analysis of Local Atmospheric Atmospheric Pressure Effects on Gravity Variations[J]. J Geod, 2005, 79(8):447-459 doi: 10.1007/s00190-005-0486-6
    [26]
    Dziewonski A, Anderson D. Preliminary Reference Earth Model[J]. Phys Earth Planet Inter, 1981, 25:297-356 doi: 10.1016/0031-9201(81)90046-7

Catalog

    Article views (1468) PDF downloads (434) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return