WU Hao, LU Nan, ZOU Jingui, GUO Shitai. An Improved 3σ Gross Error Detection Method for GNSS Deformation Monitoring Time Series[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9): 1282-1288. DOI: 10.13203/j.whugis20170338
Citation: WU Hao, LU Nan, ZOU Jingui, GUO Shitai. An Improved 3σ Gross Error Detection Method for GNSS Deformation Monitoring Time Series[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9): 1282-1288. DOI: 10.13203/j.whugis20170338

An Improved 3σ Gross Error Detection Method for GNSS Deformation Monitoring Time Series

Funds: 

The National Key Research and Development Program of China 2017YFE0109500

the National Natural Science Foundation of China 41671406

the Natural Science Foundation of Hubei Province 2016CFA013

the Natural Science Foundation of Hubei Province 2016AHB015

More Information
  • Author Bio:

    WU Hao, PhD, professor, specializes in application technology of earth observation and GNSS. E-mail:haowu1977@163.com

  • Received Date: June 24, 2018
  • Published Date: September 04, 2019
  • Aiming at the characteristics of quantity and fluctuation range on the gross error from global navigation satellite system (GNSS) deformation monitoring time series, we propose an improved 3σ method of gross error detection based on wavelet analysis. We use simulated data and actual engineering data, and compare the detection results with the traditional 3σ method and inter-quartile range (IQR) method respectively. The experimental results show that compared with the traditional 3σ method and IQR method, the improved 3σ method not only has better effect on the overall detection rate, but also has more obvious advantages in detecting 3σ to 5σ gross error. Thus, it is more suitable for the actual requirement of GNSS deformation monitoring project.
  • [1]
    Wu Hao, Yin Ya, Wang Shijie, et al. Optimizing GPS-Guidance Transit Route for Cable Crane Collision Avoidance Using Artificial Immune Algorithm[J]. GPS Solutions, 2017, 21(2):823-834 doi: 10.1007/s10291-016-0573-6
    [2]
    吴浩, 黄创, 张建华, 等.GNSS/GIS集成的露天矿高边坡变形监测系统研究与应用[J].武汉大学学报·信息科学版, 2015, 40(5):706-710 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whchkjdxxb201505025

    Wu Hao, Huang Chuang, Zhang Jianhua, et al. Deformation Monitoring System for High Slope in Open Pit Mine with the Integration of GNSS and GIS[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5):706-710 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whchkjdxxb201505025
    [3]
    刘恒辉, 丁健, 王璠.卡尔曼滤波粗差探测在GPS变形监测中的应用[J].全球定位系统, 2013, 38(1):87-90 doi: 10.3969/j.issn.1008-9268.2013.01.021

    Liu Henghui, Ding Jian, Wang Fan. The Applications of Kalman Filter Gross Error Detection in GPS Deformation Monitoring[J]. GNSS World of China, 2013, 38(1):87-90 doi: 10.3969/j.issn.1008-9268.2013.01.021
    [4]
    曾志林.GPS工程网粗差探测与定位研究[D].天津: 南开大学, 2006 http://d.wanfangdata.com.cn/Thesis/Y968618

    Zeng Zhilin. Research on Gross Error Detection and Location of GPS Engineering Network[D]. Tianjin: Nankai University, 2006 http://d.wanfangdata.com.cn/Thesis/Y968618
    [5]
    Nikolaidis R. Observation of Geodetic and Seismic Deformation with the Global Positioning System[J]. Cancer Research, 2002, 71(8):714 http://adsabs.harvard.edu/abs/2002PhDT........75N
    [6]
    张恒璟, 程鹏飞.基于GPS高程时间序列粗差的抗差探测与插补研究[J].大地测量与地球动力学, 2011, 31(4):71-75 http://d.old.wanfangdata.com.cn/Periodical/dkxbydz201104016

    Zhang Hengjing, Cheng Pengfei. Study on Robust Detection and Interpolation from Gross Errors of GPS Height Time Series[J]. Journal of Geodesy and Geodynamics, 2011, 31(4):71-75 http://d.old.wanfangdata.com.cn/Periodical/dkxbydz201104016
    [7]
    徐洪钟, 吴中如, 李雪红, 等.基于小波分析的大坝变形观测数据的趋势分量提取[J].武汉大学学报(工学版), 2003, 36(6):5-8 http://d.old.wanfangdata.com.cn/Periodical/whsldldxxb200306002

    Xu Hongzhong, Wu Zhongru, Li Xuehong, et al. Abstracting Trend Component of Dam Observation Data Based on Wavelet Analysis[J]. Engineering Journal of Wuhan University, 2003, 36(6):5-8 http://d.old.wanfangdata.com.cn/Periodical/whsldldxxb200306002
    [8]
    黄立人, 韩月萍, 高艳龙, 等.GNSS连续站坐标的高程分量时间序列在地壳垂直运动研究中应用的若干问题[J].大地测量与地球动力学, 2012, 32(4):10-14 http://d.old.wanfangdata.com.cn/Periodical/dkxbydz201204003

    Huang Liren, Han Yueping, Gao Yanlong, et al. Several Issues in Appliation of Elevation Compoment Time Series of GNSS CORS in Vertical Crustal Movement Studying[J]. Journal of Geodesy and Geodynamics, 2012, 32(4):10-14 http://d.old.wanfangdata.com.cn/Periodical/dkxbydz201204003
    [9]
    Cheng Yingyan, Wang Xiaoming, Wu Suqin, et al. An Effective Toolkit for the Interpolation and Gross Error Detection of GPS Time Series[J]. Empire Survey Review, 2016, 48(348):202-211 doi: 10.1179/1752270615Y.0000000023
    [10]
    李喜盼, 扈静, 李海刚.基于小波分析的GPS动态变形数据粗差识别模型研究[J].测绘通报, 2011(4):7-9 http://d.old.wanfangdata.com.cn/Periodical/chtb201104003

    Li Xipan, Hu Jing, Li Haigang. Research on Model of Gross Error Identification for GPS Dynamic Deformation Data Based on Wavelet Analysis[J]. Bulletin of Surveying and Mapping, 2011(4):7-9 http://d.old.wanfangdata.com.cn/Periodical/chtb201104003
    [11]
    王坚, 高井祥, 苗李莉.强污染单历元GPS形变信号的提取和粗差识别[J].武汉大学学报·信息科学版, 2004, 29(5):416-419 http://ch.whu.edu.cn/CN/abstract/abstract4642.shtml

    Wang Jian, Gao Jingxiang, Miao Lili. Strong Contaminated Single Epoch GPS Deformation Signals Extracting and Gross Error Detection[J]. Geomatics and Information Science of Wuhan University, 2004, 29(5):416-419 http://ch.whu.edu.cn/CN/abstract/abstract4642.shtml
    [12]
    冯小磊, 华锡生, 黄红女.观测值序列的粗差探测方法[J].水电与抽水蓄能, 2006, 30(3):56-59 doi: 10.3969/j.issn.1671-3893.2006.03.019

    Feng Xiaolei, Hua Xisheng, Huang Hongnü. Gross-Error Detection for Observation Data Series[J]. Hydropower Automation and Dam Monitoring, 2006, 30(3):56-59 doi: 10.3969/j.issn.1671-3893.2006.03.019
    [13]
    李建平.小波分析与信号处理:理论、应用及软件实现[M].重庆:重庆出版社, 1997

    Li Jianping. Wavelet Analysis and Signal Processing-Theory, Application and Software Realization[M]. Chongqing:Chongqing Press, 1997
    [14]
    张斌, 孙静.基于Mallat算法和快速傅里叶变换的电能质量分析方法[J].电网技术, 2007(19):35-40 http://d.old.wanfangdata.com.cn/Periodical/dwjs200719007

    Zhang Bin, Sun Jing. A Power Quality Analysis Method Based on Mallat Algorithm and Fast Fourier Transform[J]. Power System Technology, 2007(19):35-40 http://d.old.wanfangdata.com.cn/Periodical/dwjs200719007
    [15]
    马攀, 孟令奎, 文鸿雁.基于小波分析的Kalman滤波动态变形模型研究[J].武汉大学学报·信息科学版, 2004, 29(4):349-353 http://ch.whu.edu.cn/CN/abstract/abstract4667.shtml

    Ma Pan, Meng Lingkui, Wen Hongyan. Kalman Filtering Model of Dynamic Deformation Based on Wavelet Analysis[J]. Geomatics and Information Science of Wuhan University, 2004, 29(4):349-353 http://ch.whu.edu.cn/CN/abstract/abstract4667.shtml
    [16]
    蒋廷臣, 张勤, 周立, 等.基于小波方法的非线性回归模型研究[J].测绘学报, 2006, 35(4):337-341 doi: 10.3321/j.issn:1001-1595.2006.04.008

    Jiang Tingcheng, Zhang Qin, Zhou Li, et al. Research on Nonlinear Regression Based on Wavelet Method[J]. Acta Geodaetica et Cartographica Sinica, 2006, 35(4):337-341 doi: 10.3321/j.issn:1001-1595.2006.04.008
    [17]
    李宗春, 邓勇, 张冠宇, 等.变形测量异常数据处理中小波变换最佳级数的确定[J].武汉大学学报·信息科学版, 2011, 36(3):285-288 http://ch.whu.edu.cn/CN/Y2011/V36/I3/285

    Li Zongchun, Deng Yong, Zhang Guanyu, et al. Determination of Best Grading of Wavelet Transform in Deformation Measurement Data Filtering[J]. Geomatics and Information Science of Wuhan University, 2011, 36(3):285-288 http://ch.whu.edu.cn/CN/Y2011/V36/I3/285
    [18]
    任超, 沙磊, 卢献健.一种改进小波阀值算法的变形监测数据滤波方法[J].武汉大学学报·信息科学版, 2012, 37(7):873-875 http://ch.whu.edu.cn/CN/Y2012/V37/I7/873

    Ren Chao, Sha Lei, Lu Xianjian. An Adaptive Wavelet Threshold De-nosing Both in Low and High Frequency Domains[J]. Geomatics and Information Science of Wuhan University, 2012, 37(7):873-875 http://ch.whu.edu.cn/CN/Y2012/V37/I7/873
    [19]
    卢辰龙, 匡翠林, 易重海, 等.奇异谱分析滤波法在消除GPS多路径中的应用[J].武汉大学学报·信息科学版, 2015, 40(7):924-931 http://ch.whu.edu.cn/CN/abstract/abstract3300.shtml

    Lu Chenlong, Kuang Cuilin, Yi Chonghai, et al. Singular Spectrum Analysis Filter Method for Mitigation of GPS Multipath Error[J]. Geomatics and Information Science of Wuhan University, 2015, 40(7):924-931 http://ch.whu.edu.cn/CN/abstract/abstract3300.shtml
  • Related Articles

    [1]Chen Xinyang, Long Xiaoxiang, Li Qingpeng, Li Jingmei, Han Qijin, Xu Zhaopeng, Yao Weiyuan. Data Proccing and Accuracy Verification for Laser Altimeter of Terrestrial Ecosystem Carbon Inventory Satellite[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230110
    [2]ZHOU Ping, TANG Xinming, WANG Xia, LIU Changru, WANG Zhenming. Geometric Accuracy Evaluation Model of Domestic Push-Broom Mapping Satellite Image[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1628-1634. DOI: 10.13203/j.whugis20160486
    [3]YAN Wei, LIU Jianjun, REN Xin, WANG Fenfei. Accuracy Analysis of CE-3 Moon-Based Ultraviolet Telescope Geometric Positioning[J]. Geomatics and Information Science of Wuhan University, 2018, 43(1): 133-137, 166. DOI: 10.13203/j.whugis20150162
    [4]MENG Weican, ZHU Shulong, CAO Wen, CAO Bincai, GAO Xiang. High Accuracy On-Orbit Geometric Calibration of Linear Push-broom Cameras[J]. Geomatics and Information Science of Wuhan University, 2015, 40(10): 1392-1399,1413. DOI: 10.13203/j.whugis20140534
    [5]YIN Chuan, WANG Yanhui. Target Geometry Matching Threshold in Incremental Updatingof Road Networks Based on OSTU[J]. Geomatics and Information Science of Wuhan University, 2014, 39(9): 1061-1067. DOI: 10.13203/j.whugis20130575
    [6]YAN Li, JIANG Yun, WANG Jun. Building of Rigorous Geometric Processing Model Based onLine-of-Sight Vector of ZY-3 Imagery[J]. Geomatics and Information Science of Wuhan University, 2013, 38(12): 1451-1455.
    [7]LIU Liangming, YE Yuanxin, FAN Dengke, XU Qi. Study on Geometric Rectification for FY-2 S-VISSR Data[J]. Geomatics and Information Science of Wuhan University, 2012, 37(4): 384-388.
    [8]WU Fang, ZHU Kunpeng. Geometric Accuracy Assessment of Linear Features' Simplification Algorithms[J]. Geomatics and Information Science of Wuhan University, 2008, 33(6): 600-603.
    [9]Li Deren, Wang Xinhua. Geometric Calibration of CCD Array Camera[J]. Geomatics and Information Science of Wuhan University, 1997, 22(4): 308-313,317.
    [10]Fan Yonghong. Geometric Rectification of SAR Image[J]. Geomatics and Information Science of Wuhan University, 1997, 22(1): 39-41.
  • Cited by

    Periodical cited type(32)

    1. 王蕾,何鑫,廖成. 基于知识库相似检索的自然资源调查监测图斑辅助辨识方法. 测绘通报. 2025(02): 137-142 .
    2. 张秀锦,张秀民. 基于轻便的node.js地图识别模型实现分析. 山东交通科技. 2024(02): 130-132 .
    3. 汤冻,奚晓轶,闫涛. 一种用于电视节目播出异态识别的人工智能模型训练方法. 电视技术. 2023(01): 61-65 .
    4. 梁生珺,于明鑫. 应用于无人机平台的轻量Transformer排水口检测框架. 电子技术与软件工程. 2023(01): 165-168 .
    5. 陶立清,黄国满,杨书成,王童童,盛辉军,范海涛. 一种利用卷积神经网络的干涉图去噪方法. 武汉大学学报(信息科学版). 2023(04): 559-567 .
    6. 桂志鹏,胡晓辉,刘欣婕,凌志鹏,姜屿涵,吴华意. 顾及地理语义的地图检索意图形式化表达与识别. 地球信息科学学报. 2023(06): 1186-1201 .
    7. 李从初,励臣儒,朱佳敏,姚浩立. 基于迁移学习和Xception网络的海雾能见度等级估测研究. 浙江气象. 2023(01): 23-28 .
    8. 田启川,吴施瑶,马英楠. 基于卷积神经网络的光学遥感影像分析综述. 计算机应用与软件. 2023(10): 1-9+45 .
    9. 樊翔宇,张聪,杨柳. 融合梅尔谱和循环残差的小样本音频分类模型. 计算机仿真. 2022(02): 195-202 .
    10. 金海峰,吴楠,张悠然. 智慧家庭中的人体动作识别研究综述. 软件导刊. 2022(04): 240-247 .
    11. 冯新扬,邵超. 跨卷积网络特征融合的SAR图像目标识别. 系统仿真学报. 2021(03): 554-561 .
    12. 任加新,刘万增,李志林,李然,翟曦. 利用卷积神经网络进行“问题地图”智能检测. 武汉大学学报(信息科学版). 2021(04): 570-577 .
    13. 王建华,冉煜琨. 适用于便携式设备的深度神经网络眼动跟踪. 计算机与现代化. 2021(08): 58-63 .
    14. 郑雯,沈琪浩,任佳. 基于Improved DR-Net算法的糖尿病视网膜病变识别与分级. 光学学报. 2021(22): 72-83 .
    15. 任福,侯宛玥. 面向机器阅读的地图名称注记类别识别方法. 武汉大学学报(信息科学版). 2020(02): 273-280 .
    16. 吴晓玲,黄金雪,何文海. 基于深度卷积神经网络的塑料垃圾分类研究. 塑料科技. 2020(04): 86-89 .
    17. 叶宇光. 基于深度残差网络的图像识别技术研究. 韶关学院学报. 2020(06): 18-22 .
    18. 王科举,廉小亲,陈彦铭,安飒,龚永罡. 基于深度学习的机械臂视觉系统. 信息技术与信息化. 2020(08): 203-208 .
    19. 侯东阳,武昊,陈军. 时空数据Web搜索的研究进展. 地理信息世界. 2020(04): 1-12+21 .
    20. 刘彩玲,岳荷荷. 基于(2D)~2-PCANet的种子图像识别. 计算机应用与软件. 2020(10): 232-238 .
    21. 谢万里,李宏志,周辉,尹绍武. 基于迁移学习与卷积神经网络的鱼濒死预警系统研究. 中国农机化学报. 2019(02): 186-192 .
    22. 宋益盛,林志杰. 基于迁移学习和数据增强技术的物种识别. 现代计算机. 2019(14): 57-63 .
    23. 李雄,文开福,钟小明,杨辉,秦德浩. 基于深度学习的人脸识别考勤管理系统开发. 实验室研究与探索. 2019(07): 115-118+123 .
    24. 李静,韩震,王文柳,崔艳荣. 基于OverFeat模型的长江口南汇潮滩植被分类. 生态科学. 2019(04): 135-141 .
    25. 江涛,王新杰. 基于卷积神经网络的高分二号影像林分类型分类. 北京林业大学学报. 2019(09): 20-29 .
    26. 呙鹏程,吴礼洋. 融合卷积特征与判别字典学习的低截获概率雷达信号识别. 兵工学报. 2019(09): 1881-1889 .
    27. 刘洋,冯全,王书志. 基于轻量级CNN的植物病害识别方法及移动端应用. 农业工程学报. 2019(17): 194-204 .
    28. 门计林,刘越岩,张斌,周繁. 多结构卷积神经网络特征级联的高分影像土地利用分类. 武汉大学学报(信息科学版). 2019(12): 1841-1848 .
    29. 赵波,廖坤,邓春宇,谈元鹏,曹生现. 基于卷积神经学习的光伏板积灰状态识别与分析. 中国电机工程学报. 2019(23): 6981-6989+7111 .
    30. 尹宗天,谢超逸,刘苏宜,刘新如. 低分辨率图像的细节还原. 软件. 2018(05): 199-202 .
    31. 宋俊芳. 基于BP神经网络的图像分割. 数字通信世界. 2018(03): 66+170 .
    32. 朱祺夫,赵俊三,陈磊士,李易. 基于深度学习的遥感影像城市建筑用地提取. 软件导刊. 2018(10): 18-21 .

    Other cited types(62)

Catalog

    Article views (1809) PDF downloads (317) Cited by(94)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return