FENG Feifan, WU Xueling, NIU Ruiqing, XU Shiluo. A Landslide Deformation Analysis Method Using V/S and LSTM[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5): 784-790. DOI: 10.13203/j.whugis20170218
Citation: FENG Feifan, WU Xueling, NIU Ruiqing, XU Shiluo. A Landslide Deformation Analysis Method Using V/S and LSTM[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5): 784-790. DOI: 10.13203/j.whugis20170218

A Landslide Deformation Analysis Method Using V/S and LSTM

Funds: 

National Natural Science Foundation of China 41871355

National Natural Science Foundation of China 41571438

Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation, the Ministry of Land and Resources KF-2015-01-006

More Information
  • Author Bio:

    FENG Feifan, master, specializes in remote sensing geological research. E-mail: giserfan@163.com

  • Corresponding author:

    WU Xueling, PhD, associate professor. E-mail: snowforesting@163.com

  • Received Date: October 23, 2018
  • Published Date: May 04, 2019
  • Landslide deformation is the result of the combination of the geological conditions and the external induced factors. The quantitative prediction of landslide deformation is the key to landslide monitoring and early warning. The traditional method based on cumulative displacement-time curve of landslide neglects the influence factors of landslide deformation and evolution, it is difficult to predict landslide deformation accurately. Landslide research in the Three Gorges reservoir area is mostly concentrated on the temporal and spatial distribution characteristics of landslides and the stability analysis of landslides. It is urgent to carry out comprehensive deformation analysis of single landslides. Baishuihe landslide is selected as a case study. Based on landslide macroscopic deformation and displacement monitoring data, spatial-temporal deformation trend of the landslide is analyzed using V/S analysis. Then, long short-term memory neural network model is constructed which consider the influence factors of reservoir water level fluctuation and rainfall hysteresis. It can effectively use the long-term dependent information to realize the quantitative prediction of landslide displacement. The results show that the landslide is characterized by traction landslide, deformation tendency gradually increases from southwest to northeast, and the west and trailing edge are relatively stable. The prediction error is 8.95 mm, which proves the model is of great performance to analyze landslide deformation.
  • [1]
    Cajueiro D O, Tabak B M.The Rescaled Variance Statistic and the Determination of the Hurst Exponent[J].Mathematics and Computers in Simulation, 2005, 70(3):172-179 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fbbeae1055ecfdd475aa7c3f6fa482ef
    [2]
    孙东永, 畅建霞, 黄强, 等.V/S和Mann-Kendall相结合的方法在洪涝灾情分析中的应用[J].西北农林科技大学学报(自然科学版), 2012, 40(4):230-234 http://www.cnki.com.cn/Article/CJFDTotal-XBNY201204039.htm

    Sun Dongyong, Chang Jianxia, Huang Qiang, et al.Application of the Combination of V/S and Mann-Kendall Method in Flood Disaster Analysis[J].Journal of Northwest A and F University (Natural Science Edition), 2012, 40(4):230-234 http://www.cnki.com.cn/Article/CJFDTotal-XBNY201204039.htm
    [3]
    顾荣宝, 陈霁霞.基于分形V/S技术的沪深股市长记忆性研究[J].安徽大学学报(自然科学版), 2008, 32(3):18-21 doi: 10.3969/j.issn.1000-2162.2008.03.006

    Gu Rongbao, Chen Jixia.Long Memory Testing for Shanghai and Shenzhen Stock Markets Based on the V/S Analysis[J].Journal of Anhui University (Natural Sciences), 2008, 32(3):18-21 doi: 10.3969/j.issn.1000-2162.2008.03.006
    [4]
    乔美英, 陈鑫, 兰建义.基于V/S分析的瓦斯涌出量分形特性研究[J].中国煤炭, 2014(10):104-110 doi: 10.3969/j.issn.1006-530X.2014.10.024

    Qiao Meiying, Chen Xin, Lan Jianyi.Study on Fractal Characteristics of Gas Emission Rate Based on V/S Analysis[J].China Coal, 2014(10):104-110 doi: 10.3969/j.issn.1006-530X.2014.10.024
    [5]
    Liwicki M, Graves A, Bunke H, et al.A Novel Approach to On-line Handwriting Recognition Based on Bidirectional Long Short-Term Memory Networks[C].The 9th International Conference on Document Analysis and Recognition, Curitiba, Brazil, 2007
    [6]
    Vinyals O, Kaiser L, Koo T, et al.Grammar as a Foreign Language[C].Advances in Neural Information Processing Systems, Montreal, Canada, 2015
    [7]
    梁军, 柴玉梅, 原慧斌, 等.基于极性转移和LSTM递归网络的情感分析[J].中文信息学报, 2015, 29(5):152-159 doi: 10.3969/j.issn.1003-0077.2015.05.020

    Liang Jun, Chai Yumei, Yuan Huibin, et al.Polarity Shifting and LSTM Based Recursive Networks for Sentiment Analysis[J].Journal of Chinese Information Processing, 2015, 29(5):152-159 doi: 10.3969/j.issn.1003-0077.2015.05.020
    [8]
    杨训政, 柯余洋, 梁肖, 等.基于LSTM的发电机组污染物排放预测研究[J].电气自动化, 2016, 38(5):22-25 doi: 10.3969/j.issn.1000-3886.2016.05.007

    Yang Xunzheng, Ke Yuyang, Liang Xiao, et al.A Study on the Prediction of Generator Set Pollutant Emissions Based on LSTM[J].Electrical Automation, 2016, 38(5):22-25 doi: 10.3969/j.issn.1000-3886.2016.05.007
    [9]
    Giraitis L, Kokoszka P, Leipus R, et al.Rescaled Variance and Related Tests for Long Memory in Volatility and Levels[J].Journal of Econometrics, 2003, 126(2):265-294 doi: 10.1016-S0304-4076(02)00197-5/
    [10]
    Peters E E.分形市场分析: 将混沌理论应用到投资与经济理论上[M].北京: 经济科学出版社, 2002

    Peters E E.Fractal Market Analysis: Appling Chaos Theory to Investment and Economics[M].Beijing: Economic Science Press, 2002
    [11]
    Peters E E.资本市场的混沌与秩序[M].北京: 经济科学出版社, 1999

    Peters E E.Chaos and Order in the Capital Markets[M].Beijing: Economic Science Press, 1999
    [12]
    Hochreiter S, Schmidhuber J.Long Short-Term Memory[J].Neural Computation, 1997, 9(8):1735-1780 doi: 10.1162/neco.1997.9.8.1735
    [13]
    Gers F A, Schmidhuber J, Cummins F.Learning to Forget:Continual Prediction with LSTM[J].Neural Computation, 2000, 12(10):2451-2471 doi: 10.1162/089976600300015015
    [14]
    胡新辰.基于LSTM的语义关系分类研究[D].哈尔滨: 哈尔滨工业大学, 2015

    Hu Xinchen.Research on Semantic Relation Classification Based on LSTM[D].Harbin: Harbin Institute of Technology, 2015
    [15]
    王建锋.滑坡发生时间预报分析[J].中国地质灾害与防治学报, 2003, 14(2):1-8 doi: 10.3969/j.issn.1003-8035.2003.02.001

    Wang Jianfeng.Quantitative Prediction of Landslide Using S-curve[J].The Chinese Journal of Geological Hazard and Control, 2003, 14(2):1-8 doi: 10.3969/j.issn.1003-8035.2003.02.001
    [16]
    张军.滑坡监测分析预报的非线性理论和方法[M].北京:中国水利水电出版社, 2010

    Zhang Jun.Landslide Deformation Monitoring Analysis and Prediction Based on Nonliner Theory and Method[M].Beijing:China Water and Power Press, 2010
    [17]
    李晓, 张年学, 廖秋林, 等.库水位涨落与降雨联合作用下滑坡地下水动力场分析[J].岩石力学与工程学报, 2004, 23(21):3714-3720 doi: 10.3321/j.issn:1000-6915.2004.21.026

    Li Xiao, Zhang Nianxue, Liao Qiulin, et al.Analysis on Hydrodynamic Field Influenced by Combination of Rainfall and Reservoir Level Fluctuation[J].Chinese Journal of Rock Mechanics and Engineering, 2004, 23(21):3714-3720 doi: 10.3321/j.issn:1000-6915.2004.21.026
    [18]
    刘小伟, 刘高, 谌文武, 等.降雨对边坡变形破坏影响的综合分析[J].岩石力学与工程学报, 2003, 22(S2):2715-2718 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb2003z2038

    Liu Xiaowei, Liu Gao, Chen Wenwu, et al.Analysis of Rainfall Influence on Slope Deformation and Failure[J].Chinese Journal of Rock Mechanics and Engineering, 2003, 22(S2):2715-2718 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb2003z2038
    [19]
    Zhang G P.Time Series Forecasting Using a Hybrid ARIMA and Neural Network Model[J].Neurocomputing, 2003, 50(1):159-175 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_f6f039d10ddb9601ced8521cbf8557c1
    [20]
    Cryer J D, Chan K S.时间序列分析及应用: R语言[M].北京: 机械工业出版社, 2011

    Cryer J D, Chan K S.Time Series Analysis with Applications in R[M].Beijing: China Machine Press, 2011
  • Related Articles

    [1]XIONG Siting, WEI Ruyi, HOU Wei, DENG Zhichao, ZHANG Bochen, YAN Qin, LI Qingquan. Land Cover Classification Based on InSAR Coherence and LSTM Model[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240460
    [2]LI Hanxu, LI Xin, HUANG Guanwen, ZHANG Qin, CHEN Shipeng. LSTM Neural Network Assisted GNSS/SINS Vehicle Positioning Based on Speed Classification[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230061
    [3]TANG Shengjun, ZHANG Yunjie, LI Xiaoming, YAO Mengmeng, YE Zhihuang, LI Yaxin, GUO Renzhong, WANG Weixi. A High-Precision Indoor Point Cloud Classification Method Jointly Optimized by Super Voxel Random Forest and LSTM Neural Network[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4): 525-533. DOI: 10.13203/j.whugis20220125
    [4]WEI Erhu, REN Xiaobin, LIU Jingnan, LI Lianyan, WU Shuguang, NIE Guigen. Prediction of Lunar Libration Parameters Using LSTM[J]. Geomatics and Information Science of Wuhan University, 2022, 47(11): 1815-1822. DOI: 10.13203/j.whugis20200318
    [5]WANG Li, XU Hao, SHU Bao, YI Chen, TIAN Yunqing. A Multi-source Heterogeneous Data Fusion Method for Landslide Monitoring with Mutual Information and IPSO-LSTM Neural Network[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10): 1478-1488. DOI: 10.13203/j.whugis20210131
    [6]ZHANG Zhenglu, WANG Xiaomin, DENG Yong, XIE Niansheng. Application of Fuzzy Neural Network in Deformation Analysis and Prediction[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 6-8.
    [7]ZHANG Zhenglu, WANG Hongchen, DENG Yong, XIE Niansheng. Methods for Landslide Deformation Analysis and Prediction[J]. Geomatics and Information Science of Wuhan University, 2009, 34(12): 1387-1389.
    [8]DENG Xingsheng, WANG Xinzhou. Application of Dynamic Neural Network in Prediction Model[J]. Geomatics and Information Science of Wuhan University, 2008, 33(1): 93-96.
    [9]WANG Xinzhou DENG Xingsheng, . Fuzzy Neural Network Modeling for Dam Deformation Prediction[J]. Geomatics and Information Science of Wuhan University, 2005, 30(7): 588-591.
    [10]Deng Yuejin, Wang Baoyuan, Zhang Zhenglu. Application of Fuzzy Artifical Neural Network to the Deformation Analysis and Predication of Side Slope[J]. Geomatics and Information Science of Wuhan University, 1998, 23(1): 26-31.
  • Cited by

    Periodical cited type(5)

    1. 吕轩凡,柳景斌,毛井锋. 一种毫米波雷达里程计自主定位技术. 测绘通报. 2024(07): 1-5 .
    2. 王余珊,郑建立. 融合毫米波雷达和惯性传感器的行人定位系统研究. 智能计算机与应用. 2024(08): 191-196 .
    3. 林倩,杨姝玥,刘林盛. 浅析毫米波雷达在汽车电子中的应用. 天津理工大学学报. 2024(05): 80-85 .
    4. 龚树凤,邓晓强,方一鸣,贾立新,吴哲夫. 基于毫米波雷达的室内人员定位与跟踪实验设计. 实验室研究与探索. 2024(11): 52-56 .
    5. 黄育夫,熊军,习涛. 基于毫米波雷达的空调节能技术研究. 家电科技. 2022(S1): 176-180 .

    Other cited types(4)

Catalog

    Article views (1425) PDF downloads (200) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return