MA Wei, XIONG Hanjiang, ZHENG Xianwei, GONG Jianya. Automatic Textures Updating Method for 3D Indoor Scenes Based on Mobile Phone Images[J]. Geomatics and Information Science of Wuhan University, 2019, 44(2): 254-259, 267. DOI: 10.13203/j.whugis20170109
Citation: MA Wei, XIONG Hanjiang, ZHENG Xianwei, GONG Jianya. Automatic Textures Updating Method for 3D Indoor Scenes Based on Mobile Phone Images[J]. Geomatics and Information Science of Wuhan University, 2019, 44(2): 254-259, 267. DOI: 10.13203/j.whugis20170109

Automatic Textures Updating Method for 3D Indoor Scenes Based on Mobile Phone Images

Funds: 

The National Key Research and Development Program of China 2016YFB0502203

Mapping Geographic Information Industry Research Projects of Public Interest Industry 201512009

the Special Research Funding of Stae Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing 

More Information
  • Author Bio:

    MA Wei, PhD, specializes in the 3DGIS and spatial data fusion. E-mail: maweiweiweiwei@163.com

  • Corresponding author:

    XIONG Hanjiang, PhD, professor. E-mail: xionghanjiang@163.com

  • Received Date: July 19, 2017
  • Published Date: February 04, 2019
  • Nowadays, the texture mapping for 3D indoor model mostly relies on heavy artificial operation. Its inefficiency and difficulty in realizing texture updating after the change of indoor environment leads to a lot of out-dated and unreal texture in time. To solve this problem, we propose a new method for updating 3D indoor model texture automatically. Using a single realistic image from smartphone, we firstly estimate the spatial layout of the room in the image based on 3D indoor scene understanding. Then, according to phone's direction and position, we find the triangular patches of the targeted wall in the 3D geometric model. At the end, the (u, v) coordinates of the image are calculated by matching the convex points of the layout box with the corresponding patches of the 3D model. The conducted experiments demonstrate that the proposed method can automatically map a single image onto the 3D indoor model, which is meaningful for the augmented reality in the indoor space.
  • [1]
    Beraldian J, Blais F, Boulanger P. Real World Modeling Through High Resolution Digital 3D Imaging of Objects and Structures[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2000, 55(4):230-250 doi: 10.1016/S0924-2716(00)00013-7
    [2]
    Aldefeld B. On Automatic Recognition of 3D Structures from 2D Representations[J].Computer-Aided Design, 1983, 15(2):59-64 doi: 10.1016-0010-4485(83)90169-0/
    [3]
    张宏鑫, 李嫄姝, 宋超.室内平面图分块矢量化与高效三维建筑建模[C].第九届中国计算机图形学大会, 成都, 2012 http://www.cnki.com.cn/Article/CJFDTotal-KXTS201301009.htm

    Zhang Hongxin, Li Yuanshu, Song Chao. Fast 3D Building Modeling Based on Vectorization on Blocked Indoor Blueprint[C]. 9th Journal of Frontiers of Computer Science and Technology, Cheng-du, China, 2012 http://www.cnki.com.cn/Article/CJFDTotal-KXTS201301009.htm
    [4]
    Aldefeld B, Richter H. Semiautomatic Three-dimensional Interpretation of Line Drawings[J].Computers and Graphics, 1984, 8(4):371-380 doi: 10.1016/0097-8493(84)90035-9
    [5]
    Ho B. Inputting Constructive Solid Geometry Representations Directly from 2D Orthographic Engineering Rrawings[J].Computer-Aided Design, 1986, 18(3):147-155 doi: 10.1016/0010-4485(86)90325-8
    [6]
    张恬洁, 康志忠.融合深度相机点云与光学影像的室内三维建模[J].测绘科学, 2016, 41(12):217-223 http://d.old.wanfangdata.com.cn/Periodical/chkx201612043

    Zhang Tianjie, Kang Zhizhong. Indoor 3D Modeling of Depth Camera Point Cloud and Optical Image[J]. Science of Surveying and Mapping, 2016, 41(12):217-223 http://d.old.wanfangdata.com.cn/Periodical/chkx201612043
    [7]
    夏文玲, 顾照鹏, 杨唐胜.实时三维重建算法的实现——基于Kinect与单目视觉SLAM的三维重建[J].计算机工程与应用, 2014, 50(24):199-203 doi: 10.3778/j.issn.1002-8331.1301-0306

    Xia Wenling, Gu Zhaopeng, Yang Tangsheng. Real-Time 3-D Reconstruction Algorithm Based on Kinect and Mono SLAM[J]. Computer Engineering and Applications, 2014, 50(24):199-203 doi: 10.3778/j.issn.1002-8331.1301-0306
    [8]
    Allen P K, Stamos I, Troccoli A, et al. 3D Mode-ling of Historic Sites Using Range and Image Data[C].International Conference on Robotics and Automation, Taiwan, China, 2003
    [9]
    Díaz-Vilariño L, Khoshelham K, Martinez-Sánchez J, et al. 3D Modeling of Building Indoor Spaces and Closed Doors from Imagery and Point Clouds[J]. Sensors, 2015, 15(2):3491-3512 doi: 10.3390/s150203491
    [10]
    Previtali M, Barazzetti L, Brumana R, et al. Towards Automatic Indoor Reconstruction of Cluttered Building Rooms from Point Clouds[J]. Remote Sensing and Spatial Information Sciences, 2014, 5(2):281-288 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000003929677
    [11]
    范冲, 王学.三维城市建筑物的纹理映射综述[J].测绘与空间地理信息, 2014, 37(7):1-10 doi: 10.3969/j.issn.1672-5867.2014.07.001

    Fan Chong, Wang Xue. Texture Mapping in 3D City Building[J]. Geomatics & Spatial Information Technology, 2014, 37(7):1-10 doi: 10.3969/j.issn.1672-5867.2014.07.001
    [12]
    Kurazume R, Nishino K, Zhang Z, et al. Simultaneous 2D Images and 3D Geometric Model Registration for Texture Mapping Utilizing Reflectance Attribute[C]. 5th Asian Conference on Computer Vision, Melbourne, Australia, 2002 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.23.3293
    [13]
    赵彬.面向真实感三维建模的纹理贴图技术研究[D].北京: 北京大学, 2008 http://cdmd.cnki.com.cn/Article/CDMD-10001-2008067746.htm

    Zhao Bin. Research on Texturing for Photo-Realistic 3-D Modeling[D].Beijing: Beijing University, 2008 http://cdmd.cnki.com.cn/Article/CDMD-10001-2008067746.htm
    [14]
    Hoiem D. Seeing the World Behind the Image: Spatial Layout for 3D Scene Understanding[D].Pittsburghers: Carnegie Mellon University, 2007 https://www.ri.cmu.edu/pub_files/pub4/hoiem_derek_2007_2/hoiem_derek_2007_2.pdf
    [15]
    李德仁, 钱新林.浅论自发地理信息的数据管理[J].武汉大学学报·信息科学版, 2010, 35(4): 379-383 http://www.cnki.com.cn/Article/CJFDTotal-WHCH201004000.htm

    Li Deren. A Brief Introduction of Data Management for Volunteered Geographic Information[J]. Geomatics and Information Science of Wuhan University, 2010, 35(4): 379-383 http://www.cnki.com.cn/Article/CJFDTotal-WHCH201004000.htm
    [16]
    Goodchild M F. Citizens as Sensors:The World of Volunteered Geography[J].GeoJournal, 2007, 69(4):211-221 doi: 10.1007/s10708-007-9111-y
    [17]
    Chen Z, Zou H, Jiang H, et al. Fusion of WiFi, Smartphone Sensors and Landmarks Using the Kalman Filter for Indoor Localization[J]. Sensors, 2015, 15(1):715-732 doi: 10.3390/s150100715
    [18]
    Gupta A, Hebert M, Kanade T, et al. Estimating Spatial Layout of Rooms Using Volumetric Reasoning About Objects and Surfaces[J]. Advances in Neural Information Processing Systems, 2010:1288-1296 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0212081631
    [19]
    Lee D C, Hebert M, Kanade T. Geometric Resoning for Single Image Structure Recovery[C]. 2013 Computer Vision and Pattern Recognition, Miami, USA, 2009 https://www.ri.cmu.edu/pub_files/2009/6/cvpr09lee.pdf
    [20]
    Hoiem D, Efros A A, Hebert M. Recovering Surface Layout from an Image[J].Computer Science, 2007, 75(1):151-172 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ028003991/
    [21]
    Hedau V, Hoiem D, Forsyth D. Recovering the Spatial Layout of Cluttered Rooms[C].12th International Conference on Computer Vision, Kyoto, Japan, 2010 http://dhoiem.cs.illinois.edu/publications/iccv2009_hedau_indoor.pdf
    [22]
    Grompone V G R, Jakubowiicz J, Morel J M, et al. LSD:A Fast Line Segment Detector with a False Detection Control[J]. Computer Science, 2010, 32(4):722-732 http://d.old.wanfangdata.com.cn/Periodical/fgxb201603018
    [23]
    Almansa A, Desolneux A, Vamech S. Vanishing Point Detection Without any a Priori Information[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2003, 25(4):502-507 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1af7e5e9bcb93b1d7191ff066a0ae447
    [24]
    Rother C. A New Approach to Vanishing Point Detection in Architectural Environments[J]. Image & Vision Computing, 2002, 20(9-10):647-655 http://cn.bing.com/academic/profile?id=9d7fa3bdf7c7a920736e3be2b4071d40&encoded=0&v=paper_preview&mkt=zh-cn
    [25]
    Tsochantaridis I, Joachims T, Hofmann T, et al. Large Margin Methods for Structured and Interdependent Output Variables[J]. Journal of Machine Learning Research, 2005, 6(2):1453-1484 http://cn.bing.com/academic/profile?id=4a4c90f53b59d3c1ce9a24b3d1fcb1f4&encoded=0&v=paper_preview&mkt=zh-cn
  • Cited by

    Periodical cited type(1)

    1. 马莉. 线上线下结合的高校篮球课程双记忆教学法实践研究. 河南财政金融学院学报(自然科学版). 2024(04): 73-77 .

    Other cited types(0)

Catalog

    Article views (1310) PDF downloads (269) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return