FENG Lin, LI Binbing. A Robust Normal Estimation Method for Terrestrial Laser Scanning Point Cloud Based on Minimum Covariance Determinant[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1647-1653. DOI: 10.13203/j.whugis20170065
Citation: FENG Lin, LI Binbing. A Robust Normal Estimation Method for Terrestrial Laser Scanning Point Cloud Based on Minimum Covariance Determinant[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1647-1653. DOI: 10.13203/j.whugis20170065

A Robust Normal Estimation Method for Terrestrial Laser Scanning Point Cloud Based on Minimum Covariance Determinant

Funds: 

The National Natural Science Foundation of China 41171224

More Information
  • Author Bio:

    FENG Lin, PhD candidate, specializes in LiDAR point cloud processing and 3D reconstruction. E-mail: FengLin_PAP@126.com

  • Received Date: July 24, 2017
  • Published Date: November 04, 2018
  • A robust normal estimation method based on local plane fitting and minimum covariance determinant (MCD) is proposed for terrestrial laser scanning (TLS) point cloud with gross errors and non-uniform sampling. Firstly, fast library for approximate nearest neighbors algorithm is performed to retrieve k nearest neighbor point set. Then, robust estimation of its covariance is calculated by DetMCD (deterministic MCD) and multivariate Mahalanobis distance. Finally, robust estimation of normal vector is calculated through principal component analysis (PCA) method. Compared with PCA, robust PCA and random sample consensus based normal estimation method, on simulated TLS point cloud, experimental results show that the proposed method can get more accurate normal estimation under the influences of gross errors. And its parallel improvement can meet the requirement of efficiency for large scale TLS point cloud processing. Further experiment on real TLS data from natural terrain shows that the proposed method helps to better Poisson surface reconstruction and prove its effectiveness in practical application.
  • [1]
    李国俊, 李宗春, 孙元超, 等.利用Delaunay细分进行噪声点云曲面重建[J].武汉大学学报·信息科学版, 2017, 42(1):123-129 http://ch.whu.edu.cn/CN/abstract/abstract5645.shtml

    Li Guojun, Li Zongchun, Sun Yuanchao, et al. Using Delaunay Refinement to Reconstruct Surface from Noisy Point Clouds[J]. Geomatics and Information Science of Wuhan University, 2017, 42(1): 123-129 http://ch.whu.edu.cn/CN/abstract/abstract5645.shtml
    [2]
    谭凯, 程效军, 张吉星. TLS强度数据的入射角及距离效应改正方法[J].武汉大学学报·信息科学版, 2017, 42(2):223-228 http://ch.whu.edu.cn/CN/abstract/abstract5665.shtml

    Tan Kai, Cheng Xiaojun, Zhang Jixing. Correction for Incidence Angle and Distance Effects on TLS Intensity Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(2): 223-228 http://ch.whu.edu.cn/CN/abstract/abstract5665.shtml
    [3]
    Hoppe H, DeRose T, Duchamp T, et al. Surface Reconstruction from Unorganized Points[C]. The 19th Annual Conference on Computer Graphics and Interactive Techniques, New York, USA, 1992 http://dl.acm.org/citation.cfm?id=134011
    [4]
    李宝, 程志全, 党岗, 等.三维点云法向量估计综述[J].计算机工程与应用, 2010, 46(23): 1-7 doi: 10.3778/j.issn.1002-8331.2010.23.001

    Li Bao, Cheng Zhiquan, Dang Gang, et al. Survey on Normal Estimation for 3D Point Clouds[J]. Computer Engineering and Applications, 2010, 46(23): 1-7 doi: 10.3778/j.issn.1002-8331.2010.23.001
    [5]
    Yang M, Lee E. Segmentation of Measured Point Data Using a Parametric Quadric Surface Approximation[J]. Computer-Aided Design, 1999, 31(7): 449-457 doi: 10.1016/S0010-4485(99)00042-1
    [6]
    Alexa M, Behr J, Cohen-Or D, et al. Point Set Surfaces[C]. The Conference on Visualization'01, San Diego, California, USA, 2001
    [7]
    Pauly M, Keiser R, Kobbelt L P, et al. Shape Modeling with Point-Sampled Geometry[J]. ACM Transactions on Graphics, 2003, 22(3): 641-650 doi: 10.1145/882262
    [8]
    Fleishman S, Cohenor D, Silva C T. Robust Moving Least-Squares Fitting with Sharp Features[J]. ACM Transactions on Graphics, 2005, 24(3): 544-552 doi: 10.1145/1073204
    [9]
    Castillo E, Liang J, Zhao H K. Point Cloud Segmentation and Denoising via Constrained Nonlinear Least Squares Normal Estimates[M]// Breuß M, Bruckstein A, Maragos P. Innovations for Shape Analysis. Berlin, Heidelberg: Springer, 2013
    [10]
    Schnabel R, Wahl R, Klein R. Efficient RANSAC for Point-Cloud Shape Detection[J]. Computer Graphics Forum, 2007, 26(2): 214-226 doi: 10.1111/cgf.2007.26.issue-2
    [11]
    Yoon M, Lee Y, Lee S, et al. Surface and Normal Ensembles for Surface Reconstruction[J]. Compu-ter-Aided Design, 2007, 39(5): 408-420 doi: 10.1016/j.cad.2007.02.008
    [12]
    Li B, Schnabel R, Klein R, et al. Robust Normal Estimation for Point Clouds with Sharp Features[J]. Computers & Graphics, 2010, 34(2): 94-106 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0215979225
    [13]
    Hubert M, Rousseeuw P J, Verdonck T. A Deterministic Algorithm for Robust Location and Scatter[J]. Journal of Computational & Graphical Statistics, 2012, 21(3): 618-637 doi: 10.1080/10618600.2012.672100
    [14]
    Muja M, Lowe D G. Scalable Nearest Neighbor Algorithms for High Dimensional Data[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2014, 36(11): 2 227-2 240 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0213214818
    [15]
    Mitra N J, Nguyen A, Guibas L. Estimating Surface Normals in Noisy Point Cloud Data[J]. International Journal of Computational Geometry & Applications, 2004, 14(4-5): 261-276 http://www.ams.org/mathscinet-getitem?mr=2087824
    [16]
    Rousseeuw P J. Multivariate Estimation with High Breakdown Point[J]. Mathematical Statistics and Applications, 1985, B: 283-297 http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1004.4883
    [17]
    Nurunnabi A, Belton D, West G. Diagnostic-Robust Statistical Analysis for Local Surface Fitting in 3D Point Cloud Data[C]. The 22nd Congress of International Society for Photogrammetry and Remote Sensing, Melbourne, Australia, 2012
    [18]
    McLachlan J. Discriminant Analysis and Statistical Pattern Recognition[J]. Technometrics, 1993, 88(422): 695-697 http://d.old.wanfangdata.com.cn/Periodical/rjxb200504005
    [19]
    王醒策, 蔡建平, 武仲科, 等.局部表面拟合的点云模型法向估计及重定向算法[J].计算机辅助设计与图形学学报, 2015, 27(4): 614-620 http://d.old.wanfangdata.com.cn/Periodical/jsjfzsjytxxxb201504007

    Wang Xingce, Cai Jianping, Wu Zhongke, et al. Normal Estimation and Normal Orientation for Point Cloud Model Based on Improved Local Surface Fitting[J]. Journal of Computer-Aided Design & Computer Graphics, 2015, 27(4): 614-620 http://d.old.wanfangdata.com.cn/Periodical/jsjfzsjytxxxb201504007
    [20]
    Hubert M, Rousseeuw P J. ROBPCA: A New Approach to Robust Principal Component Analysis[J]. Technometrics, 2005, 47(1): 64-79 doi: 10.1198/004017004000000563
    [21]
    Fischler M A, Bolles R C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography[J]. Communications of the ACM, 1981, 24(6): 381-395 doi: 10.1145/358669.358692
  • Related Articles

    [1]GAO Xianjun, RAN Shuhao, ZHANG Guangbin, YANG Yuanwei. Building Extraction Based on Multi-feature Fusion and Object-Boundary Joint Constraint Network[J]. Geomatics and Information Science of Wuhan University, 2024, 49(3): 355-365. DOI: 10.13203/j.whugis20210520
    [2]ZENG Anmin, MING Feng, WU Fumei. Fusion Model for Long-Term Solutions to the Terrestrial Reference Frame Using Internal Constraints[J]. Geomatics and Information Science of Wuhan University, 2022, 47(9): 1447-1451. DOI: 10.13203/j.whugis20190453
    [3]LI Weilian, ZHU Jun, ZHANG Yunhao, FU Lin, HU Ya, YIN Lingzhi, DAI Yi. A Fusion Modeling and Interaction Method with Spatial Semantic Constraint for Debris Flow VR Scene[J]. Geomatics and Information Science of Wuhan University, 2020, 45(7): 1073-1081. DOI: 10.13203/j.whugis20180329
    [4]XIE Xuemei, SONG Yingchun, XIA Yuguo. An Active Set Algorithm of Conjugate Gradients for Adjustment Model with Interval Constraints[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9): 1274-1281. DOI: 10.13203/j.whugis20170325
    [5]FAN Yaxin, ZHU Xinyan, GUO Wei, SHE Bing. Boundary-Constrained Max-p-Regions Problem and Its Heuristic Algorithm[J]. Geomatics and Information Science of Wuhan University, 2019, 44(6): 859-865. DOI: 10.13203/j.whugis20170253
    [6]XIE Xuemei, SONG Yingchun, XIAO Zhaobing. A Fast Search Algorithm in Adjustment Model with Inequality Constraint[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1349-1354. DOI: 10.13203/j.whugis20160435
    [7]YANG Yuanxi, ZENG Anmin, JING Yifan. GNSS Data Fusion with Functional and Stochastic ModelConstraints as well as Property Analysis[J]. Geomatics and Information Science of Wuhan University, 2014, 39(2): 127-131. DOI: 10.13203/j.whugis20130378
    [8]ZHU Qing, LI Haifeng, YANG Xiaoxia. Hierarchical Semantic Constraint Model for Focused Remote Sensing Information Services[J]. Geomatics and Information Science of Wuhan University, 2009, 34(12): 1454-1457.
    [9]ZENG Anmin, YANG Yuanxi, OUYANG Guichong. Sequential Adjustment with Constraints Among Parameters[J]. Geomatics and Information Science of Wuhan University, 2008, 33(2): 183-186.
    [10]ZHONG Min, YAN Haoming, ZHU Yaozhong, YU Yongqiang. Global Ocean Angular Momentum Variability and Geodetic Constraint[J]. Geomatics and Information Science of Wuhan University, 2003, 28(6): 697-702.
  • Cited by

    Periodical cited type(1)

    1. 任亚飞,郑玉丽,姚雷博. 基于图像识别的淬火过程中钢球计数研究. 拖拉机与农用运输车. 2021(06): 52-54+58 .

    Other cited types(3)

Catalog

    Article views PDF downloads Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return