ZHANG Yize, CHEN Junping, YANG Sainan, CHEN Qian. Analysis of PPP Performance Based on BDS Comprehensive Zone Corrections[J]. Geomatics and Information Science of Wuhan University, 2019, 44(2): 159-165. DOI: 10.13203/j.whugis20170044
Citation: ZHANG Yize, CHEN Junping, YANG Sainan, CHEN Qian. Analysis of PPP Performance Based on BDS Comprehensive Zone Corrections[J]. Geomatics and Information Science of Wuhan University, 2019, 44(2): 159-165. DOI: 10.13203/j.whugis20170044

Analysis of PPP Performance Based on BDS Comprehensive Zone Corrections

Funds: 

The National Natural Science Foundation of China 11403112

The National Natural Science Foundation of China 11673050

the Opening Project of Shanghai Key Laboratory of Space Navigation and Positioning Techniques KFKT_201706

More Information
  • Author Bio:

    ZHANG Yize, PhD, specializes in the GNSS precise positioning and GNSS augmentation.E-mail: zhyize@163.com

  • Corresponding author:

    CHEN Junping, PhD, professor. E-mail:junping@shao.ac.cn

  • Received Date: December 04, 2017
  • Published Date: February 04, 2019
  • Comprehensive zone correction is a new type of differential corrections for BeiDou wide area augmentation system. As broadcasted together with the equivalent satellite clock and orbit corrections by BDS satellites, they enable user decimeter-level real-time positioning capability using the carrier-phase observations. In this paper, we give a brief introduction of comprehensive zone corrections, and the function model of precise point positioning (PPP) for dual-and single-frequency users using the comprehensive zone corrections. Tracking data of 30 stations in mainland China are used to evaluate the PPP performance, including convergence time, positioning accuracy and its relation with the user's distance from the zone center. Results show that the dual-frequency PPP convergences to 0.5 m in 25 minutes and the positioning accuracy are 0.15 m in horizontal and 0.2 m in vertical, respectively. As for single frequency PPP, the positioning accuracy convergences to 0.8 m in 20 minutes, while the positioning accuracy is 0.3 m in horizontal and 0.5 m in vertical. We conclude that the BDS PPP accuracy using the broadcasted wide area differential corrections reaches decimeter level within the distance of 1 000 km around zone center, and the accuracy becomes slightly worse with the user's distance from the zone center increasing.
  • [1]
    Zhou Shanshi, Hu Xiaogong, Wu Bin, et al. Orbit Determination and Time Synchronization for a GEO/IGSO Satellite Navigation Constellation with Regional Tracking Network[J]. Sci China-Phys Mech Astron, 2011, 54(6):1089-1097 doi: 10.1007/s11433-011-4342-9
    [2]
    Zhou Shanshi, Cao Yueling, Zhou Jianhua, et al. Positioning Accuracy Assessment for the 4GEO/5IGSO/2MEO Constellation of COMPASS[J]. Sci China-Phys Mech Astron, 2012, 55(12):2290-2299 doi: 10.1007/s11433-012-4942-z
    [3]
    Tang Chengpan, Hu Xiaogong, Zhou Shanshi, et al. Improvement of Orbit Determination Accuracy for BeiDou Navigation Satellite System with Two-Way Satellite Time Frequency Transfer[J]. Advance in Space Research, 2016, 58(7):1390-1400 doi: 10.1016/j.asr.2016.06.007
    [4]
    He Feng, Zhou Shanshi, Hu Xiaogong, et al. Sate-llite-Station Time Synchronization Information Based Real-Time Orbit Error Monitoring and Correction of Navigation Satellite in BeiDou System[J]. Sci China-Phys Mech Astron, 2014, 57(7):1395-1403 doi: 10.1007/s11433-014-5412-6
    [5]
    Yang Yuanxi, Li Jinlong, Xu Junyi, et al. Contribution of the COMPASS Satellite Navigation System to Global PNT Users[J]. Science Bulletin, 2011, 56(26):2813-2819 doi: 10.1007/s11434-011-4627-4
    [6]
    Wu Xiaoli, Zhou Jianhua, Wang Gang, et al. Multipath Error Detection and Correction for GEO/IGSO Satellites[J]. Sci China-Phys Mech Astron, 2012, 55(7):1297-1306 doi: 10.1007/s11433-012-4741-6
    [7]
    Cao Yueling, Hu Xiaogong, Wu Bin, et al. The Wide -Area Difference System for the Regional Satellite Navigation System of COMPASS[J]. Sci China-Phys Mech Astron, 2012, 55(7):1307-1315 doi: 10.1007/s11433-012-4746-1
    [8]
    Chen Junping, Zhang Yize, Yang Sainan, et al. A New Approach for Satellite Based GNSS Augmentation System: From Sub-meter to Better than 0.2 Meter Era[C]. Proceedings of the ION 2015 Pacific PNT Meeting, Honolulu, Hawaii, 2015
    [9]
    李浩军, 朱卫东.北斗导航系统卫星频间钟差偏差[J].测绘学报, 2014, 43(11):1127-1131

    Li Haojun, Zhu Weidong. Inter Frequency Clock Bias of BeiDou[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(11):1127-1131
    [10]
    China Satellite Navigation Office. BeiDou Navigation Satellite System Signal in Space Interface Control Document Open Service Signal (Version 2.)[OL].http://www.wendangku.net/doc/oobc206125c52cc58bd6becf.html, 2013
    [11]
    Wu Xiaoli, Hu Xiaogong, Wang Gang, et al. Evaluation of COMPASS Ionospheric Model in GNSS Positioning[J]. Advance in Space Research, 2013, 51(6):959-968 doi: 10.1016/j.asr.2012.09.039
    [12]
    Wu Xiaoli, Zhou Jianhua, Tang Bo, et al. Evaluation of COMPASS Ionospheric Grid[J]. GPS Solutions, 2014, 18(4):639-649 doi: 10.1007/s10291-014-0394-4
    [13]
    Gao Yang, Shen Xiaobing. A New Method of Carrier Phase Based Precise Point Positioning[J]. Journal of Navigation, 2002, 49(2):109-116 doi: 10.1002/navi.2002.49.issue-2
    [14]
    Yang Yuanxi, Li Jinlong, Wang Aibing, et al. Preliminary Assessment of the Navigation and Positioning Performance of BeiDou Regional Navigation Satellite System[J]. Science China-Earth Sciences, 2014, 57(1):144-152 doi: 10.1007/s11430-013-4769-0
    [15]
    Montenbruck O, Steigenberger P, Khachikyan R, et al. IGS-MGEX: Preparing the Ground for the Multi-Constellation GNSS Science[C]. 4th International Colloquium on Scientific and Fundamental Aspects of the Galileo System, Prague, CZ, 2013
    [16]
    Deng Zhiguo, Mathias F, Uhlemann M, et al. Reprocessing of GFZ Multi-GNSS Product GBM[C]. IGS workshop, Sydney, Australia, 2016
  • Related Articles

    [1]MA Jingzhen, SUN Qun, WEN Bowei, ZHOU Zhao, LU Chuanwei, LÜ Zheng, SUN Shijie. A Hybrid Multi-feature Road Network Selection Method Based on Trajectory Data[J]. Geomatics and Information Science of Wuhan University, 2022, 47(7): 1009-1016. DOI: 10.13203/j.whugis20190480
    [2]YANG Hao, HE Zongyi, CHEN Huayang, ZHOU Zhuanxiang, FAN Yong. A Method for Automatic Generalization of Urban Settlements Considering Road Network[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6): 965-970. DOI: 10.13203/j.whugis20160094
    [3]CAO Weiwei, ZHANG Hong, HE Jing, LAN Tian. Road Selection Considering Structural and Geometric Properties[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 520-524. DOI: 10.13203/j.whugis20140862
    [4]YANG Lin, WAN Bo, WANG Run, ZUO Zejun, AN Xiaoya. Matching Road Network Based on the Structural Relationship Constraint of Hierarchical Strokes[J]. Geomatics and Information Science of Wuhan University, 2015, 40(12): 1661-1668. DOI: 10.13203/j.whugis20140295
    [5]tianjin g, renchan g, wangyihen g, xiongfu q uan, leiyin g zhe. imp rovementofself-best-fitstrate gyforstrokebuildin g[J]. Geomatics and Information Science of Wuhan University, 2015, 40(9): 1209-1214. DOI: 10.13203/j .whu g is20140455
    [6]LIU Hailong, QIAN Haizhong, WANG Xiao, HE Haiwei. Road Networks Global Matching Method Using Analytical Hierarchy Process[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5): 644-651. DOI: 10.13203/j.whugis20130350
    [7]TIAN Jing, HE Qingsong, YAN Fen. Formalization and New Algorithm of stroke Generation in Road Networks[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5): 556-560. DOI: 10.13203/j.whugis20120127
    [8]TIAN Jing, WU Dang, ZHAN Yifei. Degree Correlation of Urban Street Networks[J]. Geomatics and Information Science of Wuhan University, 2014, 39(3): 332-334. DOI: 10.13203/j.whugis20120675
    [9]CHEN Jun, HU Yungang, ZHAO Renliang, LI Zhilin. Road Data Updating Based on Map Generalization[J]. Geomatics and Information Science of Wuhan University, 2007, 32(11): 1022-1027.
    [10]HUANG Shuqiang, SUN Chengzhi, FU Zhongliang. License Plate Binarization Algorithm Based on the Features of Characters' Strokes[J]. Geomatics and Information Science of Wuhan University, 2003, 28(1): 71-73,79.
  • Cited by

    Periodical cited type(9)

    1. 赵天明,孙群,马京振,张付兵,温伯威. 融合路段和stroke特征的道路自动选取方法. 地球信息科学学报. 2024(12): 2673-2685 .
    2. 郭漩,钱海忠,王骁,刘俊楠,任琰,赵钰哲,陈国庆. 多源道路智能选取的本体知识推理方法. 测绘学报. 2022(02): 279-289 .
    3. 马京振,孙群,温伯威,周炤,陆川伟,吕峥,孙士杰. 结合轨迹数据的混合多特征道路网选取方法. 武汉大学学报(信息科学版). 2022(07): 1009-1016 .
    4. 朱余德,杨敏,晏雄锋. 利用图卷积神经网络的道路网选取方法. 北京测绘. 2022(11): 1455-1459 .
    5. 韩远,王中辉,徐智邦,余贝贝. 结合引力场理论的道路自动选取方法. 测绘科学. 2021(01): 189-195 .
    6. 韩远,王中辉,禄小敏. POI辅助下的道路选取. 测绘科学. 2021(04): 165-171 .
    7. 陈晓东,余劲松弟. 顾及语义关联信息的道路选取方法. 海南大学学报(自然科学版). 2021(03): 227-234 .
    8. 王晓妍. 土地利用图中线状要素综合的质量评价. 测绘通报. 2020(04): 116-120 .
    9. 冯云,朱素华,孙益清,王金鑫. 郑州轨道交通5号线开通对城市交通格局的影响. 城市勘测. 2020(04): 54-58 .

    Other cited types(11)

Catalog

    Article views PDF downloads Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return