Citation: | XU Feng, CAI Jiannan, LIU Qiliang, HE Zhanjun, DENG Min. An Automatic Method for Discovering Significant Regional Spatial Colocation Patterns[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1538-1545. DOI: 10.13203/j.whugis20170008 |
[1] |
Shekhar S, Huang Y.Discovering Spatial Colocation Patterns: A Summary of Results[C]. International Symposium on Spatial and Temporal Databases, Redondo Beach, USA, 2001
|
[2] |
Yoo J S, Shekhar S, Smith J, et al. A Partial Join Approach for Mining Colocation Patterns[C]. The 12th Annual ACM International Workshop on Geographic Information Systems, Washington D C, USA, 2004
|
[3] |
Openshaw S. Geographical Data Mining: Key Design Issues[C]. Proceedings of GeoComputation, Virginia, USA, 1999
|
[4] |
Goodchild M F. The Fundamental Laws of GIScience[R]. University Consortium for Geographic Information Science, University of California, Santa Barbara, 2003
|
[5] |
Shekhar S, Evans M R, Kang J M, et al. Identi-fying Patterns in Spatial Information:A Survey of Methods[J]. Wiley Interdisciplinary Reviews:Data Mining and Knowledge Discovery, 2011, 1(3):193-214 doi: 10.1002/widm.25
|
[6] |
沙宗尧, 李晓雷.异质环境下的空间关联规则挖掘[J].武汉大学学报·信息科学版, 2009, 34(12):1480-1484 http://ch.whu.edu.cn/CN/Y2009/V34/I12/1480
Sha Zongyao, Li Xiaolei. Algorithm of Mining Spatial Association Data Under Spatially Heterogeneous Environment[J]. Geomatics and Information Science of Wuhan University, 2009, 34(12):1480-1484 http://ch.whu.edu.cn/CN/Y2009/V34/I12/1480
|
[7] |
Yoo J S, Shekhar S. A Joinless Approach for Mi-ning Spatial Colocation Patterns[J].IEEE Transactions on Knowledge and Data Engineering, 2006, 18(10):1323-1337 doi: 10.1109/TKDE.2006.150
|
[8] |
Xiao X, Xie X, Luo Q, et al. Density Based Colocation Pattern Discovery[C]. The 16th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Irvine, CA, USA, 2008
|
[9] |
Celik M, Kang J M, Shekhar S. Zonal Colocation Pattern Discovery with Dynamic Parameters[C]. The 7th IEEE International Conference on Data Mining, Omaha, NE, USA, 2007
|
[10] |
Qian F, Chiew K, He Q, et al. Mining Regional Colocation Patterns with KNNG[J]. Journal of Intelligent Information Systems, 2014, 42(3):485-505 doi: 10.1007/s10844-013-0280-5
|
[11] |
Eick C F, Parmar R, Ding W, et al. Finding Regional Co-location Patterns for Sets of Continuous Variables in Spatial Datasets[C]. The 16th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Irvine, California, 2008
|
[12] |
Mohan P, Shekhar S, Shine J A, et al. A Neighborhood Graph Based Approach to Regional Colocation Pattern Discovery: A Summary of Results[C]. The 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Chicago, USA, 2011
|
[13] |
Wang S, Huang Y, Wang X S. Regional Colocations of Arbitrary Shapes[C]. International Symposium on Spatial and Temporal Databases, Munich, Germany, 2013
|
[14] |
Ding W, Eick C F, Yuan X, et al. A Framework for Regional Association Rule Mining and Scoping in Spatial Datasets[J].Geoinformatica, 2011, 15(1):128 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0221971525
|
[15] |
Illian J, Penttinen A, Stoyan H, et al. Statistical Analysis and Modelling of Spatial Point Patterns[J].Technometrics, 2008, 47(4):516-517
|
[16] |
Gelfand A E. Handbook of Spatial Statistics[M]. UK:CRC Press, 2010
|
[17] |
Wiegand T, Moloney K A. Handbook of Spatial Point Pattern Analysis in Ecology[M]. UK:CRC Press, 2013
|
[18] |
Wiegand T, He F, Hubbell S P. A Systematic Comparison of Summary Characteristics for Quantifying Point Patterns in Ecology[J].Ecography, 2013, 36(1):92-103 doi: 10.1111/j.1600-0587.2012.07361.x
|
[19] |
刘启亮, 邓敏, 石岩, 等.一种基于多约束的空间聚类方法[J].测绘学报, 2011, 40(4):509-516 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201101695864
Liu Qiliang, Deng Min, Shi Yan, et al. A Novel Spatial Clustering Method Based on Multi-Constraints[J]. Acta Geodaetica et Cartographica Si-nica, 2011, 40(4):509-516 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201101695864
|
[20] |
Barua S, Sander J. Mining Statistically Significant Colocation and Segregation Patterns[J].IEEE Transactions on Knowledge & Data Engineering, 2014, 26(5):1185-1199 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0232400076
|
[21] |
Neyman J, Scott E L. Statistical Approach to Problems of Cosmology[J].Journal of the Royal Statistical Society, 1958, 20(1):143 http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1312.2580
|
[22] |
Lotwick H W, Silverman B W. Methods for Analysing Spatial Processes of Several Types of Points[J].Journal of the Royal Statistical Society. Series B (Methodological), 1982, 44(3):406-413 https://www.researchgate.net/publication/232128728_Methods_for_Analysing_Spatial_Processes_of_Several_Types_of_Points
|
[23] |
Diggle P J. Statistical Analysis of Spatial Point Patterns[M]. London:Edward Arnold Publishers, 2003
|
[24] |
Ripley B D. The Second Order Analysis of Stationary Point Processes[J]. Journal of Applied Probability, 1976, 13(2):255-266 doi: 10.2307/3212829
|
[25] |
Yoo J S, Bow M. Mining Spatial Colocation Patterns:A Different Framework[J].Data Mining and Knowledge Discovery, 2012, 24(1):159-194 doi: 10.1007/s10618-011-0223-0
|
[26] |
Besag J, Diggle P J. Simple Monte Carlo Tests for Spatial Patterns[J].Journal of the Royal Statistical Society:Series C (Applied Statistics), 1977, 26(3):327-333 doi: 10.1177/096228029500400203
|
[27] |
Zimmer K D, Hanson M A, Butler M G. Interspecies Relationships, Community Structure, and Factors Influencing Abundance of Submerged Macrophytes in Prairie Wetlands[J].Wetlands, 2003, 23(4):717-728 doi: 10.1672/0277-5212(2003)023[0717:IRCSAF]2.0.CO;2
|
[28] |
Keddy P A. Wetland Ecology:Principles and Conservation[M]. UK:Cambridge University Press, 2010
|
[29] |
Barua S, Sander J. Mining Statistically Sound Colocation Patterns at Multiple Distances[C]. The 26th International Conference on Scientific and Statistical Database Management, Aalborg, Denmark, 2014
|
1. |
吴静,傅优杰,程朋根. 基于粗糙集的局部同位模式挖掘算法. 测绘通报. 2022(10): 80-85+104 .
![]() |