XU Feng, CAI Jiannan, LIU Qiliang, HE Zhanjun, DENG Min. An Automatic Method for Discovering Significant Regional Spatial Colocation Patterns[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1538-1545. DOI: 10.13203/j.whugis20170008
Citation: XU Feng, CAI Jiannan, LIU Qiliang, HE Zhanjun, DENG Min. An Automatic Method for Discovering Significant Regional Spatial Colocation Patterns[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1538-1545. DOI: 10.13203/j.whugis20170008

An Automatic Method for Discovering Significant Regional Spatial Colocation Patterns

Funds: 

The National Natural Science Foundation of China 41730105

The National Natural Science Foundation of China 41601410

the Science and Technology Foundation of Hunan Province 2015SK2078

Open Research Fund of the State Key Laboratory of Resources and Environmental Information System 

the Postgraduate Research and Innovation Foundation of Central South University 2017zzts174

More Information
  • Author Bio:

    XU Feng, PhD candidate, specializes in the methods and applications of spatial data mining. E-mail:xufengcsu@163.com

  • Corresponding author:

    CAI Jiannan, PhD candidate. E-mail:jncai@outlook.com

  • Received Date: November 25, 2017
  • Published Date: October 04, 2018
  • Discovery of regional spatial colocation patterns facilities understanding of the spatial dependency of different spatial features at the regional scale. However, two challenges remain:①appropriate thresholds for prevalence measures are difficult to specify without prior knowledge; and ②natural localities of regional spatial colocation patterns with different densities and shapes can hardly be automatically detected. On that account, an automatic method for discovering significant regional spatial colocation patterns is proposed in this paper. First, a nonparametric statistical model is developed to test for significance of spatial colocation patterns. Then, an adaptive spatial clustering method is modified to detect hot spots of each candidate regional spatial colocation pattern that is not identified as a statistically significant spatial colocation pattern at the global scale. At last, all hot spots are iteratively expanded until no larger statistically significant localities can be detected. Comparison between this automatic method and an existing method is carried out with both simulated and ecological datasets. Experiments show that the regional spatial colocation patterns can be effectively detected with less subjectivity and prior knowledge by this automatic method.
  • [1]
    Shekhar S, Huang Y.Discovering Spatial Colocation Patterns: A Summary of Results[C]. International Symposium on Spatial and Temporal Databases, Redondo Beach, USA, 2001
    [2]
    Yoo J S, Shekhar S, Smith J, et al. A Partial Join Approach for Mining Colocation Patterns[C]. The 12th Annual ACM International Workshop on Geographic Information Systems, Washington D C, USA, 2004
    [3]
    Openshaw S. Geographical Data Mining: Key Design Issues[C]. Proceedings of GeoComputation, Virginia, USA, 1999
    [4]
    Goodchild M F. The Fundamental Laws of GIScience[R]. University Consortium for Geographic Information Science, University of California, Santa Barbara, 2003
    [5]
    Shekhar S, Evans M R, Kang J M, et al. Identi-fying Patterns in Spatial Information:A Survey of Methods[J]. Wiley Interdisciplinary Reviews:Data Mining and Knowledge Discovery, 2011, 1(3):193-214 doi: 10.1002/widm.25
    [6]
    沙宗尧, 李晓雷.异质环境下的空间关联规则挖掘[J].武汉大学学报·信息科学版, 2009, 34(12):1480-1484 http://ch.whu.edu.cn/CN/Y2009/V34/I12/1480

    Sha Zongyao, Li Xiaolei. Algorithm of Mining Spatial Association Data Under Spatially Heterogeneous Environment[J]. Geomatics and Information Science of Wuhan University, 2009, 34(12):1480-1484 http://ch.whu.edu.cn/CN/Y2009/V34/I12/1480
    [7]
    Yoo J S, Shekhar S. A Joinless Approach for Mi-ning Spatial Colocation Patterns[J].IEEE Transactions on Knowledge and Data Engineering, 2006, 18(10):1323-1337 doi: 10.1109/TKDE.2006.150
    [8]
    Xiao X, Xie X, Luo Q, et al. Density Based Colocation Pattern Discovery[C]. The 16th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Irvine, CA, USA, 2008
    [9]
    Celik M, Kang J M, Shekhar S. Zonal Colocation Pattern Discovery with Dynamic Parameters[C]. The 7th IEEE International Conference on Data Mining, Omaha, NE, USA, 2007
    [10]
    Qian F, Chiew K, He Q, et al. Mining Regional Colocation Patterns with KNNG[J]. Journal of Intelligent Information Systems, 2014, 42(3):485-505 doi: 10.1007/s10844-013-0280-5
    [11]
    Eick C F, Parmar R, Ding W, et al. Finding Regional Co-location Patterns for Sets of Continuous Variables in Spatial Datasets[C]. The 16th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Irvine, California, 2008
    [12]
    Mohan P, Shekhar S, Shine J A, et al. A Neighborhood Graph Based Approach to Regional Colocation Pattern Discovery: A Summary of Results[C]. The 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Chicago, USA, 2011
    [13]
    Wang S, Huang Y, Wang X S. Regional Colocations of Arbitrary Shapes[C]. International Symposium on Spatial and Temporal Databases, Munich, Germany, 2013
    [14]
    Ding W, Eick C F, Yuan X, et al. A Framework for Regional Association Rule Mining and Scoping in Spatial Datasets[J].Geoinformatica, 2011, 15(1):128 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0221971525
    [15]
    Illian J, Penttinen A, Stoyan H, et al. Statistical Analysis and Modelling of Spatial Point Patterns[J].Technometrics, 2008, 47(4):516-517
    [16]
    Gelfand A E. Handbook of Spatial Statistics[M]. UK:CRC Press, 2010
    [17]
    Wiegand T, Moloney K A. Handbook of Spatial Point Pattern Analysis in Ecology[M]. UK:CRC Press, 2013
    [18]
    Wiegand T, He F, Hubbell S P. A Systematic Comparison of Summary Characteristics for Quantifying Point Patterns in Ecology[J].Ecography, 2013, 36(1):92-103 doi: 10.1111/j.1600-0587.2012.07361.x
    [19]
    刘启亮, 邓敏, 石岩, 等.一种基于多约束的空间聚类方法[J].测绘学报, 2011, 40(4):509-516 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201101695864

    Liu Qiliang, Deng Min, Shi Yan, et al. A Novel Spatial Clustering Method Based on Multi-Constraints[J]. Acta Geodaetica et Cartographica Si-nica, 2011, 40(4):509-516 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201101695864
    [20]
    Barua S, Sander J. Mining Statistically Significant Colocation and Segregation Patterns[J].IEEE Transactions on Knowledge & Data Engineering, 2014, 26(5):1185-1199 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0232400076
    [21]
    Neyman J, Scott E L. Statistical Approach to Problems of Cosmology[J].Journal of the Royal Statistical Society, 1958, 20(1):143 http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1312.2580
    [22]
    Lotwick H W, Silverman B W. Methods for Analysing Spatial Processes of Several Types of Points[J].Journal of the Royal Statistical Society. Series B (Methodological), 1982, 44(3):406-413 https://www.researchgate.net/publication/232128728_Methods_for_Analysing_Spatial_Processes_of_Several_Types_of_Points
    [23]
    Diggle P J. Statistical Analysis of Spatial Point Patterns[M]. London:Edward Arnold Publishers, 2003
    [24]
    Ripley B D. The Second Order Analysis of Stationary Point Processes[J]. Journal of Applied Probability, 1976, 13(2):255-266 doi: 10.2307/3212829
    [25]
    Yoo J S, Bow M. Mining Spatial Colocation Patterns:A Different Framework[J].Data Mining and Knowledge Discovery, 2012, 24(1):159-194 doi: 10.1007/s10618-011-0223-0
    [26]
    Besag J, Diggle P J. Simple Monte Carlo Tests for Spatial Patterns[J].Journal of the Royal Statistical Society:Series C (Applied Statistics), 1977, 26(3):327-333 doi: 10.1177/096228029500400203
    [27]
    Zimmer K D, Hanson M A, Butler M G. Interspecies Relationships, Community Structure, and Factors Influencing Abundance of Submerged Macrophytes in Prairie Wetlands[J].Wetlands, 2003, 23(4):717-728 doi: 10.1672/0277-5212(2003)023[0717:IRCSAF]2.0.CO;2
    [28]
    Keddy P A. Wetland Ecology:Principles and Conservation[M]. UK:Cambridge University Press, 2010
    [29]
    Barua S, Sander J. Mining Statistically Sound Colocation Patterns at Multiple Distances[C]. The 26th International Conference on Scientific and Statistical Database Management, Aalborg, Denmark, 2014
  • Cited by

    Periodical cited type(1)

    1. 吴静,傅优杰,程朋根. 基于粗糙集的局部同位模式挖掘算法. 测绘通报. 2022(10): 80-85+104 .

    Other cited types(3)

Catalog

    Article views (1764) PDF downloads (205) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return