CUI Shengcheng, ZHU Wenyue, YANG Shizhi, LI Xuebin. Regularization-Based Retrieval Method for Surface Reflective Property Parameters[J]. Geomatics and Information Science of Wuhan University, 2018, 43(8): 1264-1270. DOI: 10.13203/j.whugis20160244
Citation: CUI Shengcheng, ZHU Wenyue, YANG Shizhi, LI Xuebin. Regularization-Based Retrieval Method for Surface Reflective Property Parameters[J]. Geomatics and Information Science of Wuhan University, 2018, 43(8): 1264-1270. DOI: 10.13203/j.whugis20160244

Regularization-Based Retrieval Method for Surface Reflective Property Parameters

Funds: 

The National Natural Science Foundation of China 41305019

the Anhui Provincial Natural Science Foundation 1308085QD70

More Information
  • Author Bio:

    CUI Shengcheng, PhD, associate professor, specializes in the theories and methods of surface reflective property retrieval and applications. E-mail: csc@aiofm.ac.cn

  • Corresponding author:

    LI Xuebin, PhD, associate professor. E-mail: xbli@aiofm.ac.cn

  • Received Date: April 09, 2017
  • Published Date: August 04, 2018
  • Climate studies at regional and global scales, require accurate descriptions of the light reflecting behaviors of the underlying surfaces at atmospheric boundary layers. A regularized constraint retrieval method is correspondingly proposed for this purpose. The key to the presented method is the determination of the regularization parameter (RP). In order to stabilize the quantitative retrievals of land surface reflective property (SRP) parameters, the optimized RP is obtained via the corner point of the L-curve. Numerical retrieval tests in Beijing-Tianjin-Tangshan region and entropy reduction results suggest that information indices in visible-red and near-infrared channels reach 11.682 2 and 10.072 6; and that the average information indices in these two channels, before and after SRP retrie-vals using L-curve-based regularization (RLC) method, are 0.440 0 and 0.354 6, with the greatest increase reaching 2.467 2 and 2.290 5, respectively. The advantage of the RLC method lies in the independence of the a priori surface parameters knowledge. The RLC method is very effective and useful for the retrievals of surface parameters in the cases of insufficient satellite observations.
  • [1]
    肖登攀, 陶福禄, Moiwo J P.全球变化下地表反照率研究进展[J].地球科学进展, 2011, 26(11):1217-1224 http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201111015.htm

    Xiao Dengpan, Tao Fulu, Moiwo J P. Research Progress on Surface Albedo Under Global Change[J]. Advances in Earth Science, 2011, 26(11):1217-1224 http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201111015.htm
    [2]
    刘荣高, 刘洋, 刘纪远. MODIS科学数据处理进展[J].自然科学进展, 2009, 19(2):141-147 doi: 10.3724/SP.J.1047.2016.00564

    Liu Ronggao, Liu Yang, Liu Jiyuan. Advances in MODIS Scientific Data Processing[J]. Progress in Natural Science, 2009, 19(2):141-147 doi: 10.3724/SP.J.1047.2016.00564
    [3]
    Li X, Gao F, Wang J, et al. A Priori Knowledge Accumulation and Its Application Linear BRDF Model Inversion[J]. J Geophys Res, 2001, 106(D11):11925-11936 doi: 10.1029/2000JD900639
    [4]
    王彦飞, Ma Shiqian, 杨华, 等.带先验约束的地表参数提取的有效反演方法[J].中国科学D辑:地球科学, 2009, 39(3):360-369 http://www.oalib.com/paper/4153214

    Wang Yanfei, Ma Shiqian, Yang Hua, et al. On the Effective Inversion by Imposing a Priori Information for Retrieval of Land Surface Parameters[J]. Science in China:Series D Earth Sciences, 2009, 39(3):360-369 http://www.oalib.com/paper/4153214
    [5]
    崔生成, 杨世植, 乔延利, 等.基于偏差原则和正则化方法反演晴空地表BRDF和反照率[J].武汉大学学报·信息科学版, 2011, 36(4):498-503 http://ch.whu.edu.cn/CN/Y2011/V36/I4/498

    Cui Shengcheng, Yang Shizhi, Qiao Yanli, et al. Retrieval of Clear-Sky Land Surface BRDF and Albedo Based on Discrepancy Principle and Regularization Method[J]. Geomatics and Information Science of Wuhan University, 2011, 36(4):498-503 http://ch.whu.edu.cn/CN/Y2011/V36/I4/498
    [6]
    Qin J, Yan G, Liu S, et al. Application of Ensemble Kalman Filter to Geophysical Parameters Retrieval in Remote Sensing:A Case Study of Kernel-Driven BRDF Model Inversion[J]. Science in China:Series D:Earth Sciences, 2006, 49(6):632-640 doi: 10.1007/s11430-006-0632-x
    [7]
    陈爱军, 卞林根, 刘玉洁, 等. MODIS反演多云地区地表反照率的一种新方法及其反演试验[J].大气科学, 2007, 31(5):855-862 http://www.cqvip.com/qk/91836X/200705/25381846.html

    Chen Aijun, Bian Lingen, Liu Yujie, et al. A New Way to Retrieve Surface Albedo over Cloudy Areas with MODIS Data and the Retrieval Experiment[J]. Chinese Journal of Atmospheric Sciences, 2007, 31(5):855-862 http://www.cqvip.com/qk/91836X/200705/25381846.html
    [8]
    王开存, 王建凯, 王普才, 等.用MODIS反演北京城市地区地表反照率精度以及算法改进[J].大气科学, 2008, 32(1):67-74 http://www.oalib.com/paper/4367960

    Wang Kaicun, Wang Jiankai, Wang Pucai, et al. Inversion of Accuracy of MODIS Albedo over Beijing Urban Area and Its Algorithm Improvement[J]. Chinese Journal of Atmospheric Sciences, 2008, 32(1):67-74 http://www.oalib.com/paper/4367960
    [9]
    崔生成, 杨世植, 乔延利, 等.正则化滤波在反演地表光谱反照率中的应用[J].武汉大学学报·信息科学版, 2012, 37(6):653-657 http://ch.whu.edu.cn/CN/Y2012/V37/I6/653

    Cui Shengcheng, Yang Shizhi, Qiao Yanli, et al. Application of Regularized Filtering Technique to Retrieval of Land Surface Spectral Albedo[J]. Geomatics and Information Science of Wuhan University, 2012, 37(6):653-657 http://ch.whu.edu.cn/CN/Y2012/V37/I6/653
    [10]
    Pokrovsky I, Pokrovsky O, Roujean J L. Land Surface Albedo Retrieval via Kernel-Based BRDF Mo-deling. Part Ⅰ:Statistical Inversion Method and Mo-del Comparison[J]. Remote Sens Environ, 2002, 84:100-119
    [11]
    Luo Y, Trishchenko A P, Latifovic R, et al. Surface Bidirectional Reflectance and Albedo Properties Derived Using a Land Cover-Based Approach with Moderate Resolution Imaging Spectroradiometer Observations[J]. J Geophys Res, 2005, 110:D01106, doi:10.1029l2004JD004741
    [12]
    Quaife T, Lewis P. Temporal Constraints on Linear BRF Model Parameters[J]. IEEE Tran Geosci Remote Sens, 2010, 48(5):2445-2450 doi: 10.1109/TGRS.2009.2038901
    [13]
    Roujean J L, Leroy M, Deschanps P Y. A Bidirectional Reflectance Model of the Earth's Surface for the Correction of Remote Sensing Data[J]. J Geophys Res, 1992, 97:20455-20468 doi: 10.1029/92JD01411
    [14]
    Tikhonov A. On the Solution of Incorrectly Stated Problems and a Method of Regularization[J]. Dokl Akad Nauk SSSR, 1963, 151:501-504
    [15]
    Cui S, Yang S, Qiao Y, et al. Adaptive Regularized Filtering for BRDF Model Inversion and Land Surface Albedo Retrieval Based on Spectrum Cutoff Technique[J]. Optik, 2012, 123:250-256 doi: 10.1016/j.ijleo.2011.04.008
    [16]
    Hansen P, O'Leary D. The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems[J]. SIAM J Sci Comput, 1993, 14(6):1487-1503 doi: 10.1137/0914086
    [17]
    Cui S, Wang Z, Yang S. Parameterization of Land Surface Albedo[J]. Chin Opt Lett, 2014, 12(11):1-5
    [18]
    Wang Y, Li X, Nashed Z, et al. Regularized Kernel-Based BRDF Model Inversion Method for Ill-Posed Land Surface Parameter Retrieval[J]. Remote Sens Environ, 2007, 111:36-50 doi: 10.1016/j.rse.2007.03.007
  • Related Articles

    [1]LIU Meng, WANG Zheng-tao. Downward Continuation Iterative Regularization Solution Based on Quasi Optimal Regularization Factor Set[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230127
    [2]LI Jian, ZHOU Qu, CHEN Xiaoling, TIAN Liqiao, LI Tingting. Spatial Scale Study on Quantitative Remote Sensing of Highly Dynamic Coastal/Inland Waters[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6): 937-942. DOI: 10.13203/j.whugis20160174
    [3]LI Deren, WANG Changwei, HU Yueming, LIU Shuguang. General Review on Remote Sensing-Based Biomass Estimation[J]. Geomatics and Information Science of Wuhan University, 2012, 37(6): 631-635.
    [4]ZHANG Qiao, SUN Xiaobing, HONG Jin, GONG Zhongqing. A Polarization Retrieval Model of Soil Moisture and Experiment[J]. Geomatics and Information Science of Wuhan University, 2011, 36(6): 708-712.
    [5]ZHAO Hongrui, TANG Zhongshi, LI Xiaowen. A Regularization Parameter Choice Method on Nonlinear Ill-posed Quantitative Remote Sensing Inversion[J]. Geomatics and Information Science of Wuhan University, 2008, 33(6): 577-580.
    [6]YAN Li, YUE Xijuan, CUI Chenfeng. A Method to Quantitatively Determine Spatial Resolution of RS Fused Image[J]. Geomatics and Information Science of Wuhan University, 2007, 32(8): 667-670.
    [7]ZHAO Hongrui, TANG Zhongshi, LI Xiaowen. A Regularization Parameter Choice Method on Linear Quantitative Remote Sensing Inversion[J]. Geomatics and Information Science of Wuhan University, 2007, 32(6): 531-535.
    [8]WANG Qiang, TANG Xueli, FAN Jinwen, HUO Lijiang. Quantitative Analysis and Comparison in Digital Manuscript Gamut[J]. Geomatics and Information Science of Wuhan University, 2006, 31(9): 806-808.
    [9]L Heng, LI Xinguo, CAO Kai. Quantitative Retrieval of Suspended Solid Concentration in Lake Taihu Based on BP Neural Net[J]. Geomatics and Information Science of Wuhan University, 2006, 31(8): 683-686.
    [10]LIUYaolin, LUOZhijun. Study on Quantitative Monitoring Soil Loss in Small Watershed Base on GIS and RS[J]. Geomatics and Information Science of Wuhan University, 2006, 31(1): 35-38.
  • Cited by

    Periodical cited type(1)

    1. 韩谷怀,秦其明,任华忠,汪子豪. 利用AB算法进行高分四号卫星数据反照率反演. 武汉大学学报(信息科学版). 2020(04): 542-549 .

    Other cited types(3)

Catalog

    Article views (1596) PDF downloads (294) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return