MENG Zhili, XU Jingzhong. A Lateral Gaussian Decomposition Method for LiDAR Waveform Data[J]. Geomatics and Information Science of Wuhan University, 2018, 43(1): 81-86, 100. DOI: 10.13203/j.whugis20150725
Citation: MENG Zhili, XU Jingzhong. A Lateral Gaussian Decomposition Method for LiDAR Waveform Data[J]. Geomatics and Information Science of Wuhan University, 2018, 43(1): 81-86, 100. DOI: 10.13203/j.whugis20150725

A Lateral Gaussian Decomposition Method for LiDAR Waveform Data

More Information
  • Author Bio:

    MENG Zhili, master, specializes in the airborne LiDAR waveform data process and application

  • Corresponding author:

    XU Jingzhong, PhD, associate professor. E-mail: jz_xu@whu.edu.cn

  • Received Date: July 03, 2016
  • Published Date: January 04, 2018
  • The decomposition of waveform data is a key step in waveform analysis. Traditional wave-form decomposition methods cannot detect overlapped sub-waveforms and weak sub-waveforms, and cannot appropriately estimate the number of Gaussian components. In this article, we propose a lateral Gaussian decomposition method. A waveform is smoothed after removing the background noise. We divide the detected waves into different types of waveforms, and estimate their initial parameters with different methods, then progressively laterally decompose waveform until all the Gaussian components are decided. After removing invalid components, we usethe Levenberg-Marquardt method to further optimize the parameters. Experiments show that this new method can effectively detect different kinds of complicated waveforms; demonstrating both robustness and efficiency.
  • [1]
    Baltsavias E P. Airborne Laser Scanning:Basic Relations and Formulas[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 1999, 54(2-3):199-214 https://www.sciencedirect.com/science/article/pii/S0924271699000155
    [2]
    Mallet C, Bretar F. Full-waveform Topographic Lidar:State-of-the-art[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2009, 64(1):1-16 https://www.sciencedirect.com/science/article/pii/S0924271608000993
    [3]
    Hug C, Ullrich A, Grimm A. Litemapper 5600 a Waveform-digitizing Lidar Terrain and Vegetation Mapping System[J]. International Archives of Photogrammetry, Remote Sensing and Spatial Information Science, 2004, 36(8/W2):24-29 https://www.researchgate.net/publication/228809808_LiteMapper-5600_-_a_waveform-digitizing_LIDAR_terrain_and_vegetation_mapping_system
    [4]
    Wagner W, Ullrich A, Melzer T, et al. from Single-pulse to Full-waveform Airborne Laser Scanners:Potential and Practical Challenges[J]. International Archives of Photogrammetry, Remote Sensing and Spatial Information Science, 2004, 35(B3):201-206 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.184.3393
    [5]
    Roncat A, Wagner W, Melzer T, et al. Echo Detection and Localization in Full-waveform Airborne Laser Scanner Data Using the Averaged Square Difference Function Estimator[J]. The Photogrammetric Journal of Finland, 2008, 21(1):62-75 https://www.researchgate.net/profile/Andreas_Roncat/publication/248359607_Echo_Detection_and_Localization_in_Full-Waveform_Airborne_Laser_Scanner_Data_using_the_Averaged_Square_Difference_Function_Estimator/links/02e7e526a712b4ded6000000.pdf?inViewer=0&pdfJsDownload=0&origin=publication_detail
    [6]
    Wagner W, Ullrich A, Ducic V, et al. Gaussian Decomposition and Calibration of a Novel Small-footprint Full-waveform Digitizing Airborne Laser Scanner[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2006, 60(2):100-112 http://www.doc88.com/p-630428910556.html
    [7]
    Jutzi B, Stilla U. Range Determination with Waveform Recording Laser Systems Using a Wiener Filter[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2006, 61(2):95-107 https://www.researchgate.net/publication/222335624_Range_determination_with_waveform_recording_laser_systems_using_a_Wiener_Filter
    [8]
    Malgorzata S. Decomposition Techniques for Full-waveform Airborne Laser Scanning Data[J]. Geomatics and Environmental Engineering, 2014, 8(1):61-74 doi: 10.7494/geom.2014.8.1.61
    [9]
    Hofton M, Minster J, Blair J. Decomposition of Laser Altimeter Waveforms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(4):1989-1996 doi: 10.1109/36.851780
    [10]
    Chauve A, Mallet C, Bretar F, et al. Processing full-waveform Lidar Data:Modelling Raw Signals[J]. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2007, 36(Part 3/W52), 102-107 https://hal-lirmm.ccsd.cnrs.fr/lirmm-00293129/document
    [11]
    Zhu J F, Zhang Z X, Hu X Y, et al. Analysis and Application of Lidar Waveform Data Using a Progressive Waveform Decomposition Method[J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2012, 38(part 531/W12), 31-36 https://www.researchgate.net/publication/274674485_Analysis_and_application_of_LiDAR_waveform_data_using_a_progressive_waveform_decomposition_method/fulltext/57a806a808ae455e854700bc/274674485_Analysis_and_application_of_LiDAR_waveform_data_using_a_progressive_waveform_decomposition_method.pdf?origin=publication_detail
    [12]
    Yu C L, Mills J P, Voysey S. Rigorous Pulse Detection from Full-waveform Airborne Laser Scan-ning Data[J]. International Journal of Remote Sensing, 2010, 31(5):1303-1324 doi: 10.1080/01431160903380599
    [13]
    刘诏, 张爱武, 段已好, 等.全波形机载激光数据分解研究[J].高技术通讯, 2014, 24(2):144-151 http://www.cqvip.com/QK/97187X/201402/49012326.html

    Liu Zhao, Zhang Aiwu, Duan Yihao, et al. Research on Decomposition of Full-waveform Airborne Laser Data[J].Chinese High Technology Letters, 2014, 24(2):144-151 http://www.cqvip.com/QK/97187X/201402/49012326.html
    [14]
    Persson Å, Söderman U, Töpel J, at al. Visualization and Analysis of Full-waveform Airborne Laser Scanner Data[J]. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2005, 36(Part 3/W19), 103-108 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.101.8798
    [15]
    Ma H C, Li Q. Modified EM Algorithm and its Application to the Decomposition of Laser Scanning Waveform Data[J].Journal of Remote Sensing, 2009, 13(1):35-41 http://en.cnki.com.cn/Article_en/CJFDTOTAL-YGXB200901018.htm
    [16]
    赖旭东, 秦楠楠, 韩晓爽, 等.一种迭代的小光斑LiDAR波形分解方法[J].红外与毫米波学报, 2013, 32(4):319-324 http://www.wenkuxiazai.com/doc/e4c5651751e79b8969022647.html

    Lai Xudong, Qin Nannan, Han Xiaoshuang, et al. Iterative Decomposition Method for Small Foot-print LiDAR Waveform[J]. Journal of Infrared and Millimeter Waves, 2013, 32(4):319-324 http://www.wenkuxiazai.com/doc/e4c5651751e79b8969022647.html
    [17]
    卢昊, 庞勇, 徐光彩, 等.机载激光雷达全波形数据与系统点云差异的定量分析[J].武汉大学学报·信息科学版, 2015, 40(5):588-593 http://ch.whu.edu.cn/CN/abstract/abstract3250.shtml

    Lu Hao, Pang Yong, Xu Guangcai, et al. Quantitative Analysis of Differences Between Full Waveform System Point Cloud Data from Airborne LiDAR[J].Geomatics and Information Science of Wuhan University, 2015, 40(5):588-593 http://ch.whu.edu.cn/CN/abstract/abstract3250.shtml
    [18]
    Savitzky A, Golay M J E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures[J]. Analytical Chemistry, 1964, 36(8):1627-1633 doi: 10.1021/ac60214a047
    [19]
    Manolis I, Lourakis A. A Brief Description of the Levenberg-Marquardt Algorithm Implemented by Levmar[OL]. http://users.ics.forth.gr/~lourakis/levmar/levmar.pdf
  • Related Articles

    [1]LIU Bingshi, ZOU Xiancai. Analysis of Sea and Land Water Storage Changes in the Western Pacific Under the Influence of ENSO[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9): 1296-1303. DOI: 10.13203/j.whugis20170392
    [2]SHI Yan, DENG Min, LIU Qiliang, TANG Jianbo. A Multi-scale Regionalization Method for Sea Surface TemperatureBased on a Scale-Space Clustering[J]. Geomatics and Information Science of Wuhan University, 2013, 38(12): 1484-1489.
    [3]ZHANG Shuangxi, ZHANG Chen, LI Mengkui, GAO Bingyu. Impact of Tibetan Plateau Deformation on China's Western Borders[J]. Geomatics and Information Science of Wuhan University, 2012, 37(10): 1145-1149.
    [4]GONG Yisong, GUI Qingming, LI Baoli, BIAN Shaofeng. Curvature Measures of the Nonlinearity Degree of the Nonlinear Filtering and Its Application[J]. Geomatics and Information Science of Wuhan University, 2011, 36(8): 904-908.
    [5]ZHOU Yongjun, KOU Xinjian. Moment and Curvature Preserving Methods for Circular Targets Accurate Location[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 203-206.
    [6]LU Tieding, TAO Benzao, ZHOU Shijian. Modeling and Algorithm of Linear Regression Based on Total Least Squares[J]. Geomatics and Information Science of Wuhan University, 2008, 33(5): 504-507.
    [7]BAO Lifeng~, . Distribution of Vertical Graident of Altimetry Gravity in the Western Pacific[J]. Geomatics and Information Science of Wuhan University, 2005, 30(9): 817-820.
    [8]LIU Aixia, WANG Changyao, LIU Zhengjun, NIU Zheng. Application of NOAA-AVHRR to Desertification Monitoring for Western China[J]. Geomatics and Information Science of Wuhan University, 2004, 29(10): 924-927.
    [9]Wang Xinzhou. Acceptable Curvature of Nonlinear Model for Linear Approximation[J]. Geomatics and Information Science of Wuhan University, 1997, 22(2): 119-121.
    [10]Yuan Xiuxiao. Correction of Earth Curvature in GPS supported Bundle Block Adjustment[J]. Geomatics and Information Science of Wuhan University, 1996, 21(3): 223-227.
  • Cited by

    Periodical cited type(2)

    1. 王乐,黄观文,张勤,燕兴元,秦志伟,王利,崔博斌. 基于区域监测站的BDS定轨策略分析. 大地测量与地球动力学. 2018(05): 497-503+509 .
    2. 王乐,燕兴元,张勤,黄观文,秦志伟. 低轨卫星增强BDS卫星定轨技术探讨. 导航定位学报. 2017(04): 51-57 .

    Other cited types(5)

Catalog

    Article views (2090) PDF downloads (421) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return