ZHU Jin, HU Bin, SHAO Hua. Trajectory Similarity Measure Based on Multiple Movement Features[J]. Geomatics and Information Science of Wuhan University, 2017, 42(12): 1703-1710. DOI: 10.13203/j.whugis20150594
Citation: ZHU Jin, HU Bin, SHAO Hua. Trajectory Similarity Measure Based on Multiple Movement Features[J]. Geomatics and Information Science of Wuhan University, 2017, 42(12): 1703-1710. DOI: 10.13203/j.whugis20150594

Trajectory Similarity Measure Based on Multiple Movement Features

Funds: 

The National Natural Science Foundation of China 41571389

The National Natural Science Foundation of China 41501431

Teacher Training Research Funding Project of Suzhou University of Science and Technology 331511203

Youth Foundation Project of Suzhou University of Science and Technology 341731204

More Information
  • Author Bio:

    ZHU Jin, PhD, lecturer, specializes in trajectory data mining. E-mail: 540896749@qq.com

  • Corresponding author:

    HU Bin, PhD, associate professor. E-mail: hb_hubin@126.com

  • Received Date: April 10, 2016
  • Published Date: December 04, 2017
  • For the shortcoming that existing methods can only measure the trajectory similarity of single movement feature (e.g. velocity, acceleration), the trajectory similarity measure based on multiple movement features is proposed. The measure is significant for analyzing and understanding the movement behaviors and mechanisms of moving objects. The measure borrows the idea of data cube, quantizes and symbolizes the multiple movement feature time series. In multiple movement feature domain space, the Euclidean distances between characters are computed as the substitution costs of weighted edit distance which is computed as the similarity measure. The measure is integrated with the spectral clustering method for movement sequential pattern discovery. Using the hurricane dataset, the known hurricane originating and movement laws in meteorological literatures verify the effectiveness of the measure.
  • [1]
    Elsner J B, Kara A B. Hurricanes of the North Atlantic:Climate and Society[M]. New York:Oxford University Press, 1999:21-24
    [2]
    Zheng Y, Liu L, Wang L, et al. Learning Transportation Mode from Raw GPS Data for Geographic Applications on the Web[C].The 17th International Conference on World Wide Web (WWW'08), Beijing, China, 2008
    [3]
    Zheng Y, Li Q, Chen Y, et al. Understanding Mobility Based on GPS Data[C].The 10th International Conference on Ubiquitous Computing (UbiComp'08), Seoul, Korea, 2008
    [4]
    张治华. 基于GPS轨迹的出行信息提取研究[D]. 上海: 华东师范大学, 2010

    Zhang Zhihua. Deriving Trip Information from GPS Trajeetories[D]. Shanghai:East China Normal University, 2010
    [5]
    Chen J, Shaw S L, Yu H, et al. Exploratory Data Analysis of Activity Diary Data a Space-Time GIS Approach[J]. Journal of Transport Geography, 2011, 19(3):394-404 doi: 10.1016/j.jtrangeo.2010.11.002
    [6]
    Dodge S, Weibel R, Laube P. Trajectory Similarity Analysis in Movement Parameter Space[C]. GISRUK, UK, 2011
    [7]
    Dodge S, Laube P, Weibel R. Movement Similarity Assessment Using Symbolic Representation of Trajectories[J]. International Journal of Geographical Information Science, 2012, 26(9):1563-1588 doi: 10.1080/13658816.2011.630003
    [8]
    Laube P, Dennis T, Forer P, et al. Movement Beyond the Snapshot -Dynamic Analysis of Geospatial Lifelines[J]. Computers, Environment and Urban Systems, 2007, 31(5):481-501 doi: 10.1016/j.compenvurbsys.2007.08.002
    [9]
    李静伟. 基于共享近邻的自适应谱聚类算法[D]. 大连: 大连理工大学, 2010

    Li Jingwei. Adaptive Spectral Clustering Based on Shared Nearest Neighbors[D]. Dalian:Dalian University of Technology, 2010
    [10]
    Han J, Kamber M, Pei J. Data Mining Concepts and Techniques[M]. 3rd Edition. Waltham:Elsevier, 2012
    [11]
    Mardia K V, Jupp P E. Directional Statistics[M]. Chichester UK:John Wiley & Sons, 2000:13-23
    [12]
    Levenshtein V I. Binary Codes Capable of Correcting Deletions, Insertions, and Reversals[J].Soviet Physics Doklady, 1966, 10(8):707-710
    [13]
    Cormen T H, Leiserson C E, Rivest R L, et al. Introduction to Algorithms[M]. 3rd Edition. Cambridge:MIT Press, 2009
    [14]
    Li Y, Liu B. A Normalized Levenshtein Distance Metric[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(6):1091-1095 doi: 10.1109/TPAMI.2007.1078
    [15]
    蔡晓妍, 戴冠中, 杨黎斌.谱聚类算法综述[J].计算机科学, 2008, 35(7):14-18 doi: 10.3969/j.issn.1002-137X.2008.07.004

    Cai Xaoyan, Dai Guanzhong, Yang Libin. Survey on Spectral Clustering Algorithms[J]. Computer Science, 2008, 35(7):14-18 doi: 10.3969/j.issn.1002-137X.2008.07.004
    [16]
    Zelnik-Manor L, Perona P. Self-Tuning Spectral Clustering[J].Advances in Neural Information Processing Systems, 2004:1601-1608 http://lihi.eew.technion.ac.il/files/Demos/SelfTuningClustering.html
  • Related Articles

    [1]WU Yuhao, CAO Xuefeng. Hilbert Code Index Method for Spatiotemporal Data of Virtual Battlefield Environment[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9): 1403-1411. DOI: 10.13203/j.whugis20190394
    [2]ZHU Jie, ZHANG Hongjun. Battlefield Geographic Environment Spatiotemporal Process Model Based on Simulation Event[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9): 1367-1377, 1437. DOI: 10.13203/j.whugis20200175
    [3]ZHU Jie, YOU Xiong, XIA Qing, ZHANG Hongjun. Battlefield Geographic Environment Data Organizational Process Modeling Based on OOPN[J]. Geomatics and Information Science of Wuhan University, 2020, 45(7): 1027-1034. DOI: 10.13203/j.whugis20180313
    [4]LI Zhaoxing, ZHAI Jingsheng, WU Fang. A Shape Similarity Assessment Method for Linear Feature Generalization[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1859-1864. DOI: 10.13203/j.whugis20180164
    [5]ZHU Jie, YOU Xiong, XIA Qing. Battlefield Environment Object Spatio-Temporal Data Organizing Model Based on Task-Process[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1739-1745. DOI: 10.13203/j.whugis20170074
    [6]LI Jian, ZHOU Qu, CHEN Xiaoling, TIAN Liqiao, LI Tingting. Spatial Scale Study on Quantitative Remote Sensing of Highly Dynamic Coastal/Inland Waters[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6): 937-942. DOI: 10.13203/j.whugis20160174
    [7]XU Junkui, WU Fang, LIU Wenfu, JIN Pengfei. Settlement Incremental Updating Quality Evaluation Basedon Neighborhood Spatial Similarity[J]. Geomatics and Information Science of Wuhan University, 2014, 39(4): 476-480. DOI: 10.13203/j.whugis20120117
    [8]AN Xiaoya, SUN Qun, YU Bohu. Feature Matching from Network Data at Different Scales Based on Similarity Measure[J]. Geomatics and Information Science of Wuhan University, 2012, 37(2): 224-228.
    [9]LIU Pengcheng, LUO Jing, AI Tinghua, LI Chang. Evaluation Model for Similarity Based on Curve Generalization[J]. Geomatics and Information Science of Wuhan University, 2012, 37(1): 114-117.
    [10]Wang Qiao. Self-similarity Analysis of Cartographic Lines and the Automated Line Generalization[J]. Geomatics and Information Science of Wuhan University, 1995, 20(2): 123-128.
  • Cited by

    Periodical cited type(1)

    1. 李成名,武鹏达,印洁. 图数统一表达地理模型及自补偿方法. 测绘学报. 2017(10): 1688-1697 .

    Other cited types(4)

Catalog

    Article views (2286) PDF downloads (490) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return