Citation: | ZHU Jin, HU Bin, SHAO Hua. Trajectory Similarity Measure Based on Multiple Movement Features[J]. Geomatics and Information Science of Wuhan University, 2017, 42(12): 1703-1710. DOI: 10.13203/j.whugis20150594 |
[1] |
Elsner J B, Kara A B. Hurricanes of the North Atlantic:Climate and Society[M]. New York:Oxford University Press, 1999:21-24
|
[2] |
Zheng Y, Liu L, Wang L, et al. Learning Transportation Mode from Raw GPS Data for Geographic Applications on the Web[C].The 17th International Conference on World Wide Web (WWW'08), Beijing, China, 2008
|
[3] |
Zheng Y, Li Q, Chen Y, et al. Understanding Mobility Based on GPS Data[C].The 10th International Conference on Ubiquitous Computing (UbiComp'08), Seoul, Korea, 2008
|
[4] |
张治华. 基于GPS轨迹的出行信息提取研究[D]. 上海: 华东师范大学, 2010
Zhang Zhihua. Deriving Trip Information from GPS Trajeetories[D]. Shanghai:East China Normal University, 2010
|
[5] |
Chen J, Shaw S L, Yu H, et al. Exploratory Data Analysis of Activity Diary Data a Space-Time GIS Approach[J]. Journal of Transport Geography, 2011, 19(3):394-404 doi: 10.1016/j.jtrangeo.2010.11.002
|
[6] |
Dodge S, Weibel R, Laube P. Trajectory Similarity Analysis in Movement Parameter Space[C]. GISRUK, UK, 2011
|
[7] |
Dodge S, Laube P, Weibel R. Movement Similarity Assessment Using Symbolic Representation of Trajectories[J]. International Journal of Geographical Information Science, 2012, 26(9):1563-1588 doi: 10.1080/13658816.2011.630003
|
[8] |
Laube P, Dennis T, Forer P, et al. Movement Beyond the Snapshot -Dynamic Analysis of Geospatial Lifelines[J]. Computers, Environment and Urban Systems, 2007, 31(5):481-501 doi: 10.1016/j.compenvurbsys.2007.08.002
|
[9] |
李静伟. 基于共享近邻的自适应谱聚类算法[D]. 大连: 大连理工大学, 2010
Li Jingwei. Adaptive Spectral Clustering Based on Shared Nearest Neighbors[D]. Dalian:Dalian University of Technology, 2010
|
[10] |
Han J, Kamber M, Pei J. Data Mining Concepts and Techniques[M]. 3rd Edition. Waltham:Elsevier, 2012
|
[11] |
Mardia K V, Jupp P E. Directional Statistics[M]. Chichester UK:John Wiley & Sons, 2000:13-23
|
[12] |
Levenshtein V I. Binary Codes Capable of Correcting Deletions, Insertions, and Reversals[J].Soviet Physics Doklady, 1966, 10(8):707-710
|
[13] |
Cormen T H, Leiserson C E, Rivest R L, et al. Introduction to Algorithms[M]. 3rd Edition. Cambridge:MIT Press, 2009
|
[14] |
Li Y, Liu B. A Normalized Levenshtein Distance Metric[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(6):1091-1095 doi: 10.1109/TPAMI.2007.1078
|
[15] |
蔡晓妍, 戴冠中, 杨黎斌.谱聚类算法综述[J].计算机科学, 2008, 35(7):14-18 doi: 10.3969/j.issn.1002-137X.2008.07.004
Cai Xaoyan, Dai Guanzhong, Yang Libin. Survey on Spectral Clustering Algorithms[J]. Computer Science, 2008, 35(7):14-18 doi: 10.3969/j.issn.1002-137X.2008.07.004
|
[16] |
Zelnik-Manor L, Perona P. Self-Tuning Spectral Clustering[J].Advances in Neural Information Processing Systems, 2004:1601-1608 http://lihi.eew.technion.ac.il/files/Demos/SelfTuningClustering.html
|
[1] | WU Yuhao, CAO Xuefeng. Hilbert Code Index Method for Spatiotemporal Data of Virtual Battlefield Environment[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9): 1403-1411. DOI: 10.13203/j.whugis20190394 |
[2] | ZHU Jie, ZHANG Hongjun. Battlefield Geographic Environment Spatiotemporal Process Model Based on Simulation Event[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9): 1367-1377, 1437. DOI: 10.13203/j.whugis20200175 |
[3] | ZHU Jie, YOU Xiong, XIA Qing, ZHANG Hongjun. Battlefield Geographic Environment Data Organizational Process Modeling Based on OOPN[J]. Geomatics and Information Science of Wuhan University, 2020, 45(7): 1027-1034. DOI: 10.13203/j.whugis20180313 |
[4] | LI Zhaoxing, ZHAI Jingsheng, WU Fang. A Shape Similarity Assessment Method for Linear Feature Generalization[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1859-1864. DOI: 10.13203/j.whugis20180164 |
[5] | ZHU Jie, YOU Xiong, XIA Qing. Battlefield Environment Object Spatio-Temporal Data Organizing Model Based on Task-Process[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1739-1745. DOI: 10.13203/j.whugis20170074 |
[6] | LI Jian, ZHOU Qu, CHEN Xiaoling, TIAN Liqiao, LI Tingting. Spatial Scale Study on Quantitative Remote Sensing of Highly Dynamic Coastal/Inland Waters[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6): 937-942. DOI: 10.13203/j.whugis20160174 |
[7] | XU Junkui, WU Fang, LIU Wenfu, JIN Pengfei. Settlement Incremental Updating Quality Evaluation Basedon Neighborhood Spatial Similarity[J]. Geomatics and Information Science of Wuhan University, 2014, 39(4): 476-480. DOI: 10.13203/j.whugis20120117 |
[8] | AN Xiaoya, SUN Qun, YU Bohu. Feature Matching from Network Data at Different Scales Based on Similarity Measure[J]. Geomatics and Information Science of Wuhan University, 2012, 37(2): 224-228. |
[9] | LIU Pengcheng, LUO Jing, AI Tinghua, LI Chang. Evaluation Model for Similarity Based on Curve Generalization[J]. Geomatics and Information Science of Wuhan University, 2012, 37(1): 114-117. |
[10] | Wang Qiao. Self-similarity Analysis of Cartographic Lines and the Automated Line Generalization[J]. Geomatics and Information Science of Wuhan University, 1995, 20(2): 123-128. |
1. |
李成名,武鹏达,印洁. 图数统一表达地理模型及自补偿方法. 测绘学报. 2017(10): 1688-1697 .
![]() |