LI Jiancheng, XU Xinyu, ZHAO Yongqi, WAN Xiaoyun. Approach for Determining Satellite Gravity Model from GOCE Gravitational Gradient Tensor Invariant Observations[J]. Geomatics and Information Science of Wuhan University, 2016, 41(1): 21-26. DOI: 10.13203/j.whugis20150554
Citation: LI Jiancheng, XU Xinyu, ZHAO Yongqi, WAN Xiaoyun. Approach for Determining Satellite Gravity Model from GOCE Gravitational Gradient Tensor Invariant Observations[J]. Geomatics and Information Science of Wuhan University, 2016, 41(1): 21-26. DOI: 10.13203/j.whugis20150554

Approach for Determining Satellite Gravity Model from GOCE Gravitational Gradient Tensor Invariant Observations

Funds: The National 973 Program of China, No. 2013CB733301; the National 863 Program of China, No. 2013AA122502; the National Natural Science Foundation of China, Nos. 41210006, 41574019 and 41374022.
More Information
  • Received Date: September 11, 2015
  • Published Date: January 04, 2016
  • A semi-analytical (SA) approach is proposed to recover a gravity field model from the GOCE tensor invariant observations. The SA approach is more efficient than the least-squares method, and could provide the posterior variance of estimated coefficients. The formulas for gravity field model determination from tensor invariant observations based on SA approach were derived and a corresponding procedure for estimation of the satellite gravity model from satellite gravity gradient observations are described. Testing results from the simulated error free observations along the circular orbit with the inclination 89.5° show that applying the SA approach to process tensor invariant observations is theoretically rigorous. Using the simulated observations with or without errors in gradiometer reference frame (GRF) along the one repeat cycle GOCE real orbit, we recovered the gravity field models from the I2 and Vzz components respectively. Numerical analysis results show that the solution from I2 was slightly better than the one from Vzz component, which verified the feasibility of the method.
  • [1]
    ESA. Gravity Field and Steady-State Ocean Circulation Mission[R]. Report for Mission Selection of the Four Candidate Earth Explorer Missions, ESA Publications Division, ESA, Paris, 1999
    [2]
    Pail R, Bruinsma S, Migliaccio F, et al. First GOCE Gravity Field Models Derived by Three Different Approaches[J]. Journal of Geodesy, 2011, 85(11):819-843
    [3]
    Mayrhofer R, Pail R, Fecher T. Quicklook Gravity Field Solutions as Part of the GOCE Quality Assessment[C]. The ESA Living Planet Symposium, Bergen, Norway, 2010
    [4]
    Yu J H, Wan X Y. Recovery of the Gravity Field from GOCE Data by Using the Invariants of Gradient Tensor[J]. Sci China Earth Sci, 2013, 56(7):1 193-1 199
    [5]
    Cai J, Sneeuw N, Baur O. GOCE Gravity Field Model Derived from the Rotational Invariants of the Gravitational Tensor (Poster)[C]. BMBF Geotechnologien Statusseminar "Erfassung des Systems Erde aus dem Weltraum IV", Stuttgart, Germany, 2011
    [6]
    Schall J, Eicker A, Kusche J. The ITG-GOCE02 Gravity Field Model from GOCE Orbit and Gradiometer Data Based on the Short Arc Approach[J]. Journal of Geodesy, 2014, 88(4):403-409
    [7]
    Baur O, Sneeuw N, Grafarend E W. Methodology and Use of Tensor Invariants for Satellite Gravity Gradiometry[J]. Journal of Geodesy, 2008, 82(4/5):279-293
    [8]
    Yu J H, Zhao D M. The Gravitational Gradient Tensor's Invariants and the Related Boundary Conditions[J]. Sci China Earth Sci, 2010, 53(5):781-790
    [9]
    Sneeuw N. A Semi-Analytical Approach to Gravity Field Analysis from Satellite Observations[D]. Munich, Germany:Technical University Munich, 2000
    [10]
    Schrama E J O. The Role of Orbit Errors in Processing of Satellite Altimeter Data[D]. Delft, Netherlands:Delft University of Technology, 1989
    [11]
    Xu Xinyu, Li Jiancheng, Jiang Weiping, et al. The Fast Analysis of GOCE Gravity Field[C]. International Association of Geodesy Symposia:Observing Our Changing Earth, Perugia, Italy, 2007
    [12]
    Colombo O L. Numerical Methods for Harmonic Analysis on the Sphere[R]. Dept. of Geodetic Science, The Ohio State University, Columbus, Ohio,1981
    [13]
    Pavlis N K, Holmes S A, Kenyon S C, et al. The Development and Evaluation of the Earth Gravitational Model 2008 (EGM2008)[J]. Journal of Geophysical Research:Solid Earth, 2012, 117(4):1 978-2 012
    [14]
    Xu Xinyu, Li Jiancheng, Zou Xiancai, et al. Simulation Study for Recovering GOCE Satellite Gravity Model Based on Space-Wise LS Method, Acta Geodaetica et Cartographica Sinica, 2011, 40(6):697-702(徐新禹, 李建成, 邹贤才, 等. 基于空域最小二乘法求解GOCE卫星重力场的模拟研究, 测绘学报, 2011, 40(6):697-702)
    [15]
    Sneeuw N, van Gelderen M. The Polar Gap[M]//Sansò F, Rummel R. Geodetic Boundary Value Problems in View of the One Centimeter Geoid. New York:Springer, 1997
    [16]
    EGG-C. GOCE Level 2 Product Data Handbook[EB/OL].https://earth.esa.int/documents/10174/1650485/GOCE_Product_Data_Handbook_Level-2, 2010
    [17]
    Rummel R, Yi W, Stummer C. GOCE Gravitational Gradiometry[J]. Journal of Geodesy, 2011, 85(11):777-790

Catalog

    Article views (1589) PDF downloads (1137) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return