Citation: | LI Jiancheng, XU Xinyu, ZHAO Yongqi, WAN Xiaoyun. Approach for Determining Satellite Gravity Model from GOCE Gravitational Gradient Tensor Invariant Observations[J]. Geomatics and Information Science of Wuhan University, 2016, 41(1): 21-26. DOI: 10.13203/j.whugis20150554 |
[1] |
ESA. Gravity Field and Steady-State Ocean Circulation Mission[R]. Report for Mission Selection of the Four Candidate Earth Explorer Missions, ESA Publications Division, ESA, Paris, 1999
|
[2] |
Pail R, Bruinsma S, Migliaccio F, et al. First GOCE Gravity Field Models Derived by Three Different Approaches[J]. Journal of Geodesy, 2011, 85(11):819-843
|
[3] |
Mayrhofer R, Pail R, Fecher T. Quicklook Gravity Field Solutions as Part of the GOCE Quality Assessment[C]. The ESA Living Planet Symposium, Bergen, Norway, 2010
|
[4] |
Yu J H, Wan X Y. Recovery of the Gravity Field from GOCE Data by Using the Invariants of Gradient Tensor[J]. Sci China Earth Sci, 2013, 56(7):1 193-1 199
|
[5] |
Cai J, Sneeuw N, Baur O. GOCE Gravity Field Model Derived from the Rotational Invariants of the Gravitational Tensor (Poster)[C]. BMBF Geotechnologien Statusseminar "Erfassung des Systems Erde aus dem Weltraum IV", Stuttgart, Germany, 2011
|
[6] |
Schall J, Eicker A, Kusche J. The ITG-GOCE02 Gravity Field Model from GOCE Orbit and Gradiometer Data Based on the Short Arc Approach[J]. Journal of Geodesy, 2014, 88(4):403-409
|
[7] |
Baur O, Sneeuw N, Grafarend E W. Methodology and Use of Tensor Invariants for Satellite Gravity Gradiometry[J]. Journal of Geodesy, 2008, 82(4/5):279-293
|
[8] |
Yu J H, Zhao D M. The Gravitational Gradient Tensor's Invariants and the Related Boundary Conditions[J]. Sci China Earth Sci, 2010, 53(5):781-790
|
[9] |
Sneeuw N. A Semi-Analytical Approach to Gravity Field Analysis from Satellite Observations[D]. Munich, Germany:Technical University Munich, 2000
|
[10] |
Schrama E J O. The Role of Orbit Errors in Processing of Satellite Altimeter Data[D]. Delft, Netherlands:Delft University of Technology, 1989
|
[11] |
Xu Xinyu, Li Jiancheng, Jiang Weiping, et al. The Fast Analysis of GOCE Gravity Field[C]. International Association of Geodesy Symposia:Observing Our Changing Earth, Perugia, Italy, 2007
|
[12] |
Colombo O L. Numerical Methods for Harmonic Analysis on the Sphere[R]. Dept. of Geodetic Science, The Ohio State University, Columbus, Ohio,1981
|
[13] |
Pavlis N K, Holmes S A, Kenyon S C, et al. The Development and Evaluation of the Earth Gravitational Model 2008 (EGM2008)[J]. Journal of Geophysical Research:Solid Earth, 2012, 117(4):1 978-2 012
|
[14] |
Xu Xinyu, Li Jiancheng, Zou Xiancai, et al. Simulation Study for Recovering GOCE Satellite Gravity Model Based on Space-Wise LS Method, Acta Geodaetica et Cartographica Sinica, 2011, 40(6):697-702(徐新禹, 李建成, 邹贤才, 等. 基于空域最小二乘法求解GOCE卫星重力场的模拟研究, 测绘学报, 2011, 40(6):697-702)
|
[15] |
Sneeuw N, van Gelderen M. The Polar Gap[M]//Sansò F, Rummel R. Geodetic Boundary Value Problems in View of the One Centimeter Geoid. New York:Springer, 1997
|
[16] |
EGG-C. GOCE Level 2 Product Data Handbook[EB/OL].https://earth.esa.int/documents/10174/1650485/GOCE_Product_Data_Handbook_Level-2, 2010
|
[17] |
Rummel R, Yi W, Stummer C. GOCE Gravitational Gradiometry[J]. Journal of Geodesy, 2011, 85(11):777-790
|