GU Haiyan, LI Haitao, YAN Li, HAN Yanshun, YU Fan, YANG Yi, LIU Zhengjun. A Geographic Object-Based Image Analysis Methodology Based on Geo-ontology[J]. Geomatics and Information Science of Wuhan University, 2018, 43(1): 31-36. DOI: 10.13203/j.whugis20150468
Citation: GU Haiyan, LI Haitao, YAN Li, HAN Yanshun, YU Fan, YANG Yi, LIU Zhengjun. A Geographic Object-Based Image Analysis Methodology Based on Geo-ontology[J]. Geomatics and Information Science of Wuhan University, 2018, 43(1): 31-36. DOI: 10.13203/j.whugis20150468

A Geographic Object-Based Image Analysis Methodology Based on Geo-ontology

Funds: 

The National Natural Science Foundation of China 41371406

the Central Public-interest Scientific Institution Basal Research Fund 7771712

More Information
  • Author Bio:

    GU Haiyan, PhD, associate professor, specializes in the theories and methods of geographic object-based image analysis. E-mail:guhy@casm.ac.cn

  • Received Date: July 17, 2016
  • Published Date: January 04, 2018
  • One of the unsolved problems of Geographic Object-Based Image Analysis (GEOBIA) is "the classification results may be inconsistent by different expert in the process of image analysis". Based on geo-ontology theory, this paper presents a novel framework "geo-graphical entity description-model building-object classification" to improve the interpretation of GEOBIA results. A geographical entity is expressed formally from the perspective of geo-ontology based on the characteristics of remote sensing image and expert knowledge. The semantic network model is built by using knowledge engineering methods and computer-actionable formal ontology languages. The image objects are classified based on semantic network model and expert rule. In the case of Land-cover classification, results show that, this method can not only obtain the classification results which reflect the geographical objects, but also grasp the semantic information of the geographical entities, and realize the sharing of land-cover classification knowledge and the reusing of the semantic network model. This new approach provides a holistic framework and method for GEOBIA.
  • [1]
    Blaschke T. Object Based Image Analysis for Remote Sensing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2010, 65(1):2-16 doi: 10.1016/j.isprsjprs.2009.06.004
    [2]
    Blaschke T, Hay G J, Kelly M, et al. Geographic Object-based Image Analysis:a New Paradigm in Remote Sensing and Geographic Information Science[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 87(1):180-191 https://www.sciencedirect.com/science/article/pii/S0924271613002220
    [3]
    Belgiu M, Tomljenovic I, Lampoltshammer T J, et al. Ontology-based Classification of Building Types Detected From Airborne Laser Scanning Data[J]. Remote Sensing, 2014, 6(2):1347-1366 doi: 10.3390/rs6021347
    [4]
    Belgiu M, Hofer B, Hofmann P. Coupling Formalized Knowledge Bases with Object-based Image Analysis[J]. Remote Sensing Letters, 2014, 5(6):530-538 doi: 10.1080/2150704X.2014.930563
    [5]
    Arvor D, Durieux L, Andres S, et al. Advances in Geographic Object-Based Image Analysis with Ontologies:A Review of main Contributions and Limitations from a Remote Sensing Perspective[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 82(8):125-137
    [6]
    Lüscher P, Weibel R, Burghardt D. Integrating Ontological Modelling and Bayesian Inference for Pattern Classification in Topographic Vector Data[J]. Computers Environment and Urban Systems, 2009, 33(5):363-374 doi: 10.1016/j.compenvurbsys.2009.07.005
    [7]
    Gruber T R. A Translation Approach to Portable Ontology Specifications[J]. Knowledge Acquisition, 1993, 5(2):199-220 doi: 10.1006/knac.1993.1008
    [8]
    Andres S, Arvor D, Pierkot C. Towards an Ontological Approach for Classifying Remote Sensing Images[C]. Proceedings of the Signal Image Technology and Internet Based Systems (SITIS), 2012 Eighth International Conference, Naples, Italy, 2012 http://ieeexplore.ieee.org/document/6395176/
    [9]
    Jesús M A J, Luis D, José A P F. A Framework for Ocean Satellite Image Classification Based on Ontologies[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(2):1048-1063 doi: 10.1109/JSTARS.2012.2217479
    [10]
    Dejrriri K, Malki M. Object-based Image Analysis and Data Mining for Building Ontology of Informal Urban Settlements[C]. Proceedings of the SPIE Remote Sensing, International Society for Optics and Photonics, Edinburgh, UK, 2012 doi: 10.1117/12.974444
    [11]
    Forestier G, Puissant A, Wemmert C, et al. Knowledge-based Region Labeling for Remote Sensing Image Interpretation[J]. Computers Environment and Urban Systems, 2012, 36(5):470-480 doi: 10.1016/j.compenvurbsys.2012.01.003
    [12]
    Kyzirakos K, Karpathiotakis M, Garbis G, et al. Wildfire Monitoring Using Satellite Images, Ontologies and Linked Geospatial Data[J]. Web Semantics Science Services and Agents on the World Wide Web, 2014, 24(4):18-26 https://www.sciencedirect.com/science/article/pii/S1570826814000031
    [13]
    崔巍, 汤世明, 李荣, 等.用地理本体和相对高程识别遥感对象的方法研究[J].武汉理工大学学报·交通科学与工程版, 2013, 37(4):695-698 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whjtkjdxxb201304006

    Cui Wei, Tang Shiming, Li Rong, et al. A Method of Identifying Remote Sensing Objects by Using Geo-ontology and Relative Elevation[J]. Journal of Wuhan university of technology (Transportation Science & Engineering), 2013, 37(4):695-698 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whjtkjdxxb201304006
    [14]
    张莹.地理本体的研究——研究进展与应用[J].测绘标准化, 2014, 30(2):24-27 http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200603010.htm

    Zhang Ying. Study on Geo-ontology Progress and Application[J]. Standardization of Surveying and Mapping, 2014, 30(2):24-27 http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200603010.htm
    [15]
    魏圆圆. 基于本体论的农业知识建模及推理研究[D]. 安徽: 中国科学技术大学, 2011 http://cdmd.cnki.com.cn/Article/CDMD-10358-1012287195.htm

    Wei Yuanyuan. Research of Ontology-based Agricultural Knowledge Modeling and Reasoning[D]. Anhui: University of Science and Technology of China, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10358-1012287195.htm
    [16]
    Tonjrs R, Glowe S, Buckner J, et al. Knowledge-based Interpretation of RS Images Using Semantic Nets[J]. Photogrammetric Engineering & Remote Sensing, 1999, 65(7):811-822 http://dialnet.unirioja.es/servlet/articulo?codigo=484964
    [17]
    Yang Y, Li H T, Han Y S, et al. High Resolution Remote Sensing Image Segmentation Based on Graph Theory and Fractal Net Evolution Approach[J]. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2015, XL-7/W4:197-201 doi: 10.5194/isprsarchives-XL-7-W4-197-2015
  • Related Articles

    [1]GAO Yang, SHA Hai, CHU Henglin, WANG Mengli. Non-ideality Characteristic Analysis and Receiver Design Constraints Recommendation for BDS B1C and B2a Signals[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4): 587-592. DOI: 10.13203/j.whugis20200568
    [2]LI Jianan, LI Yu, ZHAO Quanhua, JIANG Haonan, HONG Yong. SAR Image Absolute Radiometric Calibration Based on RCS Modeling of Communication Tower[J]. Geomatics and Information Science of Wuhan University, 2021, 46(11): 1746-1755. DOI: 10.13203/j.whugis20210052
    [3]XIE Ping, ZHANG Shuangxi, WANG Haihong, WU Tengfei, CAI Jianfeng. Cross Wavelet Analysis on the Influence of the Three Gorges Dam Impounding on the Reservoir Precipitation[J]. Geomatics and Information Science of Wuhan University, 2019, 44(6): 821-829, 907. DOI: 10.13203/j.whugis20180410
    [4]YANG Jie, CHANG Yonglei, LI Pingxiang, ZHAO Lingli, SHI Lei. Distributed Targets Extraction for SAR Polarimetric Calibration Using Helix Scattering[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2023-2029. DOI: 10.13203/j.whugis20180180
    [5]XU Xiyu, WANG Zhenzhan, XU Ke. Application of Laser Tracking Technology to Absolute Calibration of Space-borne Radar Altimeters[J]. Geomatics and Information Science of Wuhan University, 2017, 42(1): 103-108. DOI: 10.13203/j.whugis20140542
    [6]WENG Yinkan, LI Song, YANG Jinling, YI Hong, WANG Hong, MA Yue. Fast Solution to the RCS of Corner Reflector for the SAR Radiometric Calibration[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1551-1556. DOI: 10.13203/j.whugis20130613
    [7]LIAO Lu, LI Pingxiang, YANG Jie, CHANG Hong. An Improved Method to SAR Polarimetric Calibration Based on Reciprocity Judgement Using Distributed Target[J]. Geomatics and Information Science of Wuhan University, 2015, 40(8): 1042-1047. DOI: 10.13203/j.whugis20140096
    [8]JIN Taoyong, HU Minzhang, JIANG Tao, ZHANG Shoujian. Cross-Calibration and Errors Analysis of Ionosphere Correction in Satellite Altimetry[J]. Geomatics and Information Science of Wuhan University, 2012, 37(6): 658-661.
    [9]WEN Xingping, HU Guangdao, YANG Xiaofeng. Cross Calibration of CBERS-02 CCD Image Based on the Pseudo-invariant Reflectance Targets[J]. Geomatics and Information Science of Wuhan University, 2009, 34(4): 409-413.
    [10]SUN Zhongmiao, XIA Zheren, LI Yingchun. Cross-Coupling Correction for LaCoste&Romberg Airborne Gravimeter[J]. Geomatics and Information Science of Wuhan University, 2006, 31(10): 883-886.
  • Cited by

    Periodical cited type(6)

    1. 严颂华,梅捷,陈永谦,陈璨. 地基GNSS-R公路边坡形变监测实验及误差分析. 武汉大学学报(信息科学版). 2024(01): 100-108 .
    2. 邓垦,周佩元,杜兰,蔡巍. 多系统单频紧组合GNSS-R测高方法. 武汉大学学报(信息科学版). 2024(01): 146-155 .
    3. 侯金华,贺凯飞,高凡,储倜,吴宇. 岸基BDS-R海面测高及其观测值加权方法. 北京航空航天大学学报. 2024(03): 1015-1026 .
    4. 张云,赵乐久,孟婉婷,秦瑾,盛志超,杨树瑚. 北斗卫星反射信号岸基海面高度反演精度的评估. 北京航空航天大学学报. 2023(05): 999-1008 .
    5. 桑文刚,刘迎春,何秀凤,王昭然. 库区GNSS-R精细化反演水面高度及其验证研究. 全球定位系统. 2022(01): 43-48 .
    6. 邢进,刘思琦,王峰,张国栋,俞永庆,王林峰. 岸基GNSS-R海洋遥感系统设计与实现. 无线电工程. 2021(10): 1104-1109 .

    Other cited types(6)

Catalog

    Article views (1983) PDF downloads (469) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return