XIE Wei, WAN Xiaoxia, YAN Wenjing, YE Songtao. Copy-Move Forgery Detection Using Slicing Transform[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1337-1342. DOI: 10.13203/j.whugis20150451
Citation: XIE Wei, WAN Xiaoxia, YAN Wenjing, YE Songtao. Copy-Move Forgery Detection Using Slicing Transform[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1337-1342. DOI: 10.13203/j.whugis20150451

Copy-Move Forgery Detection Using Slicing Transform

Funds: 

The National Program on Key Basic Research Project of China 2012CB725302

the National Natural Science Foundation of China 61275172

More Information
  • Author Bio:

    XIE Wei, PhD candidate, specializes in digital image processing and digital image forensics. E-mail:tntxie@qq.com

  • Corresponding author:

    WAN Xiaoxia, PhD, professor. E-mail:wan@whu.edu.cn

  • Received Date: May 10, 2016
  • Published Date: September 04, 2017
  • There are usually some issues such as high-dimension and high computational complexity that need to be solved in digital image copy-move forgery detection. In this paper, we propose a new method for digital image copy-move tampering detection based on slicing transform (SLT). The original image is divided via Slicing Transform, then image slices is grouped before overlapping blocking. The local slice density feature vector of each group slicing block is extracted for copy-move forgery detection. Experimental results demonstrate that the extracted feature vector which has lower dimension compared with other methods representing the image block. The proposed method can detect copy-move forgery regions faster and more accurately, and it is robust to post-processing such as rotation and scaling.
  • [1]
    Birajdar G K, Mankar V H. DigitalImage Forgery Detection Using Passive Techniques:A Survey[J]. Digital Investigation, 2013, 10(3):226-245 doi: 10.1016/j.diin.2013.04.007
    [2]
    Fridrich A J, Soukal B D, Lukáš A J.Detection of Copy-Move Forgery in Digital Images[C]. Digital Forensic Research Workshop, Cleveland, USA, 2003
    [3]
    Popescu A C, Farid H. Exposing Tigital Forgeries by Detecting Duplicated Image Regions[R]. Dartmouth Computer Scieuce Technical Report, Dartmouth, USA, 2004.
    [4]
    Kang X B, Wei S M. Identifying Tampered Regions Using Singular Value Decomposition in Digital Image Forensics[C].International Conference on Computer Science and Software Engineering, New York, USA, 2008
    [5]
    Mahdian B, Saic S. Detection of Copy-Move Forgery Using a Method Based on Blur Moment Invariants[J].Forensic Science International, 2007, 171(2):180-189 http://www.sciencedirect.com/science/article/pii/S0379073806006748
    [6]
    Li G, Wu Q, Tu D, et al. A Sorted Neighborhood Approach for Detecting Duplicated Regions in Image Forgeries Based on DWT and SVD[C]. IEEE International Conference on Multimedia and Expo, New York, USA, 2007
    [7]
    Bashar M, Noda K, Ohnishi N, et al.Exploring Duplicated Regions in Natural Images[J]. IEEE Transactions on Image Processing, 2010(99):1-40 http://www.ncbi.nlm.nih.gov/pubmed/20350843
    [8]
    Ryu S J, Lee M J, Lee H K. Detection of Copy-Rotate-Move Forgery Using Zernike Moments[C]. Information Hiding-international Conference, Berlin, Germany, 2010
    [9]
    Ardizzone E, Bruno A, Mazzola G.Detecting Multiple Copies in Tampered Images[C]. IEEE International Conference on Image Processing, New York, USA, 2010
    [10]
    Amerini I, Ballan L, Caldelli R, et al. A Sift-based Forensic Method for Copy-Move Attack Detection and Transformation Recovery[J].IEEE Transactions on Information Forensics and Security, 2011, 6(3):1099-1110 doi: 10.1109/TIFS.2011.2129512
    [11]
    Shivakumar B L, Baboo L D S S. Detection of Region Duplication Forgery in Digital Images Using SURF[J].IJCSI International Journal of Computer Science Issues, 2011, 8(4):199-205 http://www.oalib.com/paper/2654588
    [12]
    Christlein V, Riess C, Jordan J, et al. An Evaluation of Popular Copy-Move Forgery Detection Approaches[J].IEEE Transactions on Information Forensics and Security, 2012, 7(6):1841-1854 doi: 10.1109/TIFS.2012.2218597
    [13]
    Tralic D, Zupancic I, Grgic S, et al. CoMoFoD-New Database for Copy-Move Forgery Detection[C]. The 55th International Symposium ELMAR, New York, USA, 2013
  • Cited by

    Periodical cited type(14)

    1. 汤圣君,杜思齐,王伟玺,郭仁忠. 面向室内空间智能的三维场景图表达与应用. 测绘学报. 2024(07): 1355-1370 .
    2. 张恒才,蔚保国,秘金钟,潘树国,陆锋. 综合PNT场景增强系统研究进展及发展趋势. 武汉大学学报(信息科学版). 2023(04): 491-505 .
    3. 韩李涛,周丽娟,龚城,张爱国. 顾及步行习惯的室内导航网络及其生成算法. 测绘学报. 2022(05): 729-738 .
    4. 朱豫,周京春. 地下建筑物室内疏散引导地图的构建. 导航定位学报. 2022(06): 97-106 .
    5. 邢健,王鹏,上官伟,柴琳果,白黎明. 航站楼内多目标路径规划方法设计与实现. 北京交通大学学报. 2021(02): 135-142 .
    6. 谭永滨,李小龙,程朋根,蔡联斌,唐瑶. 顾及距离约束的地标相对影响力评价模型. 测绘学报. 2021(12): 1663-1670 .
    7. 万远,胡同,贺彪,杨彪. 多条件约束三维动态行人疏散路径优化方法. 火灾科学. 2021(04): 192-201 .
    8. 王维才,艾廷华,晏雄锋,卢巍. 多约束条件下的正六边形格网室内路径规划. 武汉大学学报(信息科学版). 2020(01): 111-118 .
    9. 赵江洪,董岩,危双丰,孙铭悦,陈朝阳. 室内导航路网提取研究进展. 测绘科学. 2020(12): 45-54+76 .
    10. 李伟,景海涛,包安明,王宝山,徐轩. 顾及精准定位的路径规划算法研究与实现. 测绘科学. 2018(07): 141-148 .
    11. 武恩超,张恒才,吴升. 基于中轴变换算法的室内外一体化导航路网自动生成方法. 地球信息科学学报. 2018(06): 730-737 .
    12. 张文元,丁京祯,杨丽娜,杨翔宇. 室内外一体化最优路径分析算法实现. 计算机工程与应用. 2018(18): 58-65 .
    13. 方志祥,徐虹,萧世伦,李清泉,袁淑君,李灵. 绝对空间定位到相对空间感知的行人导航研究趋势. 武汉大学学报(信息科学版). 2018(12): 2173-2182 .
    14. 刘涛,张星,李清泉,方志祥,李秋萍. 一种运动恢复结构和航位推算结合的室内行人视觉定位方法. 地球信息科学学报. 2017(06): 744-753 .

    Other cited types(17)

Catalog

    Article views PDF downloads Cited by(31)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return