YAN Li, HU Xiaobin, XIE Hong. Data Management and Visualization of Mobile Laser Scanning Point Cloud[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1131-1136. DOI: 10.13203/j.whugis20150386
Citation: YAN Li, HU Xiaobin, XIE Hong. Data Management and Visualization of Mobile Laser Scanning Point Cloud[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1131-1136. DOI: 10.13203/j.whugis20150386

Data Management and Visualization of Mobile Laser Scanning Point Cloud

Funds: 

The National Public Welfare Foundation for Surveying, Mapping and Geoinformation Industry Research of China with Project 201512008

More Information
  • Author Bio:

    YAN Li, PhD, professor, specializes photogrammetry, remote sensing imagery processing and application, 3D laser scanning imaging measurement technology. E-mail:lyan@sgg.whu.edu.cn

  • Corresponding author:

    HU Xiaobin, PhD, E-mail: 494278321@qq.com

  • Received Date: June 21, 2015
  • Published Date: August 04, 2017
  • This paper proposed an organization method of laser point cloud data for the efficient management and rapid visualization of the massive point cloud data of vehicle-mounted laser scanner. In this paper, both the original point cloud data and its trajectory are sectioned for the fast indexing firstly, then the LOD(levels of details) index of each section is build based on octree structure. With a tile type and multiresolution storage mode based on folder system, the depth of octree structure is represented by the level of folder directory, and in every node folder, the corresponding point cloud data file and its node properties file are both include. The storage method of this paper decreases the preprocessing time greatly and can support concurrent access owing to mutually independence of each node. Moreover, with the application of view frustum culling technology and multi-thread dynamic dispatch technology, the rendering and roaming of massive point cloud can realize real time updating according to viewpoint change, which significantly improves the dispatch efficiency of vehicle-mounted laser point cloud data. In the experiment, our method was compared with several popular software of point cloud data processing (e.g. XGRT, Quick Terrain Reader) on the data dispatch. The results show our method has obvious advantage on storage capacity, data access time, memory footprint, rendering frame rate and so on, it indicates our method is effective for the management of vehicle-mounted laser point cloud data and can improve the production efficiency for indoor-work of vehicle-mounted laser point cloud data processing.
  • [1]
    魏征. 车载LiDAR点云中建筑物的自动识别与立面几何重建[D]. 武汉: 武汉大学, 2012 http://cdmd.cnki.com.cn/Article/CDMD-10486-1013151916.htm

    Wei Zheng. Automated Extraction of Buildings and Facades Reconstructon from Mobile LiDAR Point Clouds[D].Wuhan:Wuhan University, 2012 http://cdmd.cnki.com.cn/Article/CDMD-10486-1013151916.htm
    [2]
    Ma Hongchao, Wang Zongyue. Distributed Data Organization and Parallel Data Retrieval Methods for Huge Laser Scanner Point Clouds[J]. Computers & Geosciences, 2011, 37(2):193-201 http://www.sciencedirect.com/science/article/pii/S0098300410002694
    [3]
    支晓栋, 林宗坚, 苏国中, 等.基于改进四叉树的LiDAR点云数据组织研究[J].计算机工程与应用, 2010, 46(9):71-74 http://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201009021.htm

    Zhi Xiaodong, Lin Zongjian, Su Guozhong, et al.Data Organization Based on Modified Quad Tree for LiDAR Point Cloud[J].Computer Engineering and Application, 2010, 46(9):71-74 http://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201009021.htm
    [4]
    黄先锋, 陶闯, 江万寿, 等.机载激光雷达点云数据的实时渲染[J].武汉大学学报·信息科学版, 2005, 30(11):975-978 http://ch.whu.edu.cn/CN/abstract/abstract2317.shtml

    Huang Xianfeng, Tao Chuang, Jiang Wanshou, et al.Real Time Display for Airborne LiDAR Point Cloud Data[J]. Geomatics and Information Science of Wuhan University, 2005, 30(11):975-978 http://ch.whu.edu.cn/CN/abstract/abstract2317.shtml
    [5]
    杨建思.一种四叉树与KD树结合的海量机载LiDAR数据组织管理方法[J].武汉大学学报·信息科学版, 2014, 39(8):918-922 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201408007.htm

    Yang Jiansi.A Method Combing the Model of the Global Quadtree Index with Local KD-Tree for Massive Airborne LiDAR Point Cloud Data Organization[J]. Geomatics and Information Science of Wuhan University, 2014, 39(8):918-922 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201408007.htm
    [6]
    谢洪, 吴博义, 赵展.一种新的海量点云数据管理方法研究[J].遥感信息, 2013, 28(6):26-32 http://www.cnki.com.cn/Article/CJFDTOTAL-YGXX201306005.htm

    Xie Hong, Wu Boyi, Zhao Zhan.A Novel Organization Method of Massive Point Cloud[J].Remote Sensing Information, 2013, 28(6):26-32 http://www.cnki.com.cn/Article/CJFDTOTAL-YGXX201306005.htm
    [7]
    Palarola R.Stream-Processing Points[C].The Conference on Visualization'05, Minneapolis, USA, 2005
    [8]
    Wand M, Berner A, Bokeloh M, et a1.Processing and Interactive Editing of Huge Point Clouds from 3D Scanners[J].Computers&Graphics, 2008, 32(2):204-220 http://www.sciencedirect.com/science/article/pii/S0097849308000253
    [9]
    Elseberg J, Borrmann D, Nüchter A.One Billion Points in the Cloud-An Octree for Efficient Processing of 3D Laser Scans[J].ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 76:76-88 doi: 10.1016/j.isprsjprs.2012.10.004
    [10]
    路明月, 何永健.三维海量点云数据的组织与索引方法[J].地球信息科学, 2008, 10(2):190-194 http://www.cnki.com.cn/Article/CJFDTOTAL-DQXX200802013.htm

    Lu Mingyue, He Yongjian.Organization and Index Method for 3D Point Cloud Data[J].Earth Informatation Journal, 2008, 10(2):190-194 http://www.cnki.com.cn/Article/CJFDTOTAL-DQXX200802013.htm
    [11]
    Wand M.Point Based Multi-resolution Rendering[D].Germany:University of Tubingen, 2004 http://www.dissertation.com/abstracts/1105157
    [12]
    廖丽琼, 白俊松, 罗德安.基于八叉树及KD树的混合型点云数据存储结构[J].计算机系统应用, 2012, 21(3):87-90 http://www.cnki.com.cn/Article/CJFDTOTAL-XTYY201203020.htm

    Liao Liqiong, Bai Junsong, Luo De'an. Integrated Point Cloud Storage Structure Based on Octree and KDTree[J]. Computer Systems & Applications, 2012, 21(3):87-90 http://www.cnki.com.cn/Article/CJFDTOTAL-XTYY201203020.htm
    [13]
    Gobbetti E, Marton F, Iglesias G, et a1. A Single-pass GPU Ray Casting Framework for Interactive Out-of-Core Rendering of Massive Volumetric Datasets[J]. Visual Computing, 2008, 24:797-806 doi: 10.1007/s00371-008-0261-9
    [14]
    Mehra R, Tripathi P, Sheffer A, et al.Visibility of Noisy Point Cloud Data[J].Computers & Graphics, 2010, 34(3):219-230 http://graphics.stanford.edu/~niloy/research/robustPointVisibility/robustPointVisibility_smi_10.html
    [15]
    Gong Jun, Ke Shengnan, Zhu Qing, et al.An Efficient Point Cloud Management Method Based on a 3D R-Tree[J].Photogrammetric Emgineering & Remote Sensing, 2012, 78(4):393-381
    [16]
    Ravada S, Horhammer M, Baris M K.Point Cloud:Storage, Loading, and Visualization[C].National Science Foundation Tera Grid Workshop on Cyber-GIS, Washington DC, USA, 2010
    [17]
    Boubekeur T, Schlick C.Interactive Out of Core Texturing with Point-sampled Textures[C].The 3rd Eurographics/IEEE VGTC Conference on Point-Based Graphics, Switzerland, 2006
    [18]
    Luebke D, Watson B, Cohen J.et al.Level of Detail for 3D Graphics[M].USA:Elsevier, 2003
  • Related Articles

    [1]PANG Qipei, WU Yunlong, XU Jingtian, SHI Xuguo, ZHANG Yi. Deep Structural Characteristics and Dynamic Processes of the Ms 6.2 Jishishan Earthquake and Its Adjacent Areas[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 356-367. DOI: 10.13203/j.whugis20240085
    [2]YANG Jiuyuan, WEN Yangmao, XU Caijun. Seismogenic Fault Structure of the 2023 Ms 6.2 Jishishan (Gansu,China) Earthquake Revealed by InSAR Observations[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 313-321. DOI: 10.13203/j.whugis20230501
    [3]WU Yunlong, LI Hao, ZHANG Fan, PANG Qipei, ZHANG Yi, YAN Jianguo, CHU Risheng. Analysis of Deep Tectonic Characteristics and Seismogenic Environment of the Ms 6.8 Earthquake in Dingri,Xizang,China[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20250052
    [4]YANG Jiuyuan, XU Caijun. Ramp-flat Seismogenic Structure of the 2020 Yutian (Xinjiang, China) MW 6.3 Earthquake Revealed by InSAR Observations[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240482
    [5]LI Zhenhong, HAN Bingquan, LIU Zhenjiang, ZHANG Miaomiao, YU Chen, CHEN Bo, LIU Haihui, DU Jing, ZHANG Shuangcheng, ZHU Wu, ZHANG Qin, PENG Jianbing. Source Parameters and Slip Distributions of the 2016 and 2022 Menyuan, Qinghai Earthquakes Constrained by InSAR Observations[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 887-897. DOI: 10.13203/j.whugis20220037
    [6]LIU Yang, XU Caijun, WEN Yangmao, LI Zhicai. InSAR Inversion and Boundary Element Analysis of the Zadoi Mw 5.9 Earthquake Fault Slip[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1678-1686. DOI: 10.13203/j.whugis20190368
    [7]WANG Leyang, LI Haiyan, CHEN Hanqing. Source Parameters and Slip Distribution Inversion of 2013 Lushan Ms 7.0 Earthquake[J]. Geomatics and Information Science of Wuhan University, 2019, 44(3): 347-354. DOI: 10.13203/j.whugis20160485
    [8]XU Caijun, HE Ping, WEN Yangmao, ZHANG Lei. Coseismic Deformation and Slip Distribution for 2011 Tohoku-Oki Mw 9.0 Earthquake:Constrained by GPS and InSAR[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12): 1387-1391.
    [9]Lin Aiwen. The Research on Fault Structure in the Wuhan Area[J]. Geomatics and Information Science of Wuhan University, 1992, 17(3): 69-76.
    [10]Guo Qingsheng. Structural Principle and Realization by Computer for Areal Regular Pattern[J]. Geomatics and Information Science of Wuhan University, 1992, 17(1): 28-33.
  • Cited by

    Periodical cited type(19)

    1. 李雨森,李为乐,许强,许善淼,王运生. 2023年积石山Ms6.2级地震InSAR同震形变探测与断层滑动分布反演. 成都理工大学学报(自然科学版). 2024(01): 22-32+75 .
    2. 王乐洋,孙龙翔,许光煜. 利用GPS数据反演震源参数的单纯形组合加权距离灰狼优化算法. 武汉大学学报(信息科学版). 2024(07): 1140-1154 .
    3. 王乐洋,席灿. 贝叶斯框架下利用GPS数据反演震源参数的一种改进MCMC算法. 地球物理学报. 2024(09): 3367-3385 .
    4. 程燕,蒋亚楠,侯中健,曾锐,罗袆沅. 2016年和2022年青海门源强震活动的InSAR形变观测与区域强震危险性分析. 地质力学学报. 2024(06): 965-977 .
    5. 于仪,李雪,孙振,刘珠妹,张朝阳. 2022年青海门源地震震源机制与同震滑动分布研究. 大地测量与地球动力学. 2023(01): 46-51 .
    6. 刘洋,李航昊,熊露雲,温扬茂,杨九元. 联合地震位错模型和ESISTEM方法提取地震同震三维形变场. 武汉大学学报(信息科学版). 2023(03): 349-358+395 .
    7. 钟储汉. 基于InSAR技术的输气管道工程穿越煤矿采空区形变特征分析研究. 石油工程建设. 2023(03): 10-16 .
    8. 李媛,杨周胜,庞亚瑾,梁洪宝,刘峡. 2022年门源M_S6.9地震前断层活动及应力状态的数值模拟. 地震地质. 2023(06): 1286-1308 .
    9. 颜丙囤,季灵运,蒋锋云,殷海涛,陈其峰,连凯旋. InSAR数据约束的2022年1月8日青海门源M_S6.9地震发震构造研究. 地震工程学报. 2022(02): 450-457 .
    10. 郭东美,何慧优. 应用全张量重力梯度组合识别并提取中国南海断裂. 武汉大学学报(信息科学版). 2022(05): 738-746 .
    11. 李振洪,韩炳权,刘振江,张苗苗,余琛,陈博,刘海辉,杜静,张双成,朱武,张勤,彭建兵. InSAR数据约束下2016年和2022年青海门源地震震源参数及其滑动分布. 武汉大学学报(信息科学版). 2022(06): 887-897 .
    12. 何秀凤,高壮,肖儒雅,罗海滨,贾东振,章浙涛. InSAR与北斗/GNSS综合方法监测地表形变研究现状与展望. 测绘学报. 2022(07): 1338-1355 .
    13. 梁斌,魏冠军. 利用InSAR技术观测台湾花莲地震断层滑动与运动机理分析. 测绘通报. 2022(09): 68-73 .
    14. 金鑫田,王世杰,姜鑫,张兰军. 2022年青海门源M_W6.9地震同震形变及断层滑动分布反演. 地球物理学进展. 2022(06): 2267-2274 .
    15. 付阿龙,安张辉,范莹莹,侯泽宇. 2022年1月8日青海门源县M_S 6.9地震地电场响应特征. 地震地磁观测与研究. 2022(06): 30-40 .
    16. 钟储汉,王强,王霞迎,张双成,牛玉芬. 基于InSAR技术的东营市地面沉降监测及多诱发因素分析. 大地测量与地球动力学. 2021(07): 727-731 .
    17. 温少妍,李成龙,李金. 2020年1月19日新疆伽师M_S6.4地震InSAR同震形变场特征及发震构造初步探讨. 内陆地震. 2020(01): 1-9 .
    18. 徐小波,连达军,白俊武. 基于CRInSAR与PSInSAR技术监测断裂带震间形变研究. 苏州科技大学学报(自然科学版). 2020(04): 51-58 .
    19. 万秀红,屠泓为,姚生海,殷翔,蔡丽雯. InSAR技术在青海地区地震中的应用研究. 高原地震. 2019(04): 14-20 .

    Other cited types(14)

Catalog

    Article views (2112) PDF downloads (441) Cited by(33)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return