WAN You, ZHOU Jiaogen, WENG Min. Research on Irregularly Shaped Spatio-Temporal Abnormal Cluster Pattern Mining for Spatial Point Data Sets[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 924-930. DOI: 10.13203/j.whugis20150069
Citation: WAN You, ZHOU Jiaogen, WENG Min. Research on Irregularly Shaped Spatio-Temporal Abnormal Cluster Pattern Mining for Spatial Point Data Sets[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 924-930. DOI: 10.13203/j.whugis20150069

Research on Irregularly Shaped Spatio-Temporal Abnormal Cluster Pattern Mining for Spatial Point Data Sets

Funds: 

The National Natural Science Foundation of China 41471327

The National Natural Science Foundation of China 41001231

More Information
  • Author Bio:

    WAN You, PhD, lecturer, specializes in geographical big data and spatial data mining. E-mail:wanyou@whu.edu.cn

  • Corresponding author:

    WENG Min, PhD, associate professor. E-mail:wengmin@whu.edu.cn

  • Received Date: August 06, 2015
  • Published Date: July 04, 2017
  • Spatio-temporal abnormal cluster pattern is an important spatial point pattern. The pattern results can reflect the distribution and evolution of spatio-temporal events timely and accurately. Early researches has verified the scan statistic based clustering methods are very effective in detection spatial and spatio-temporal abnormal cluster pattern. However, due to the fixed shape of scan window, traditional scan statistic based clustering methods have limitation on obtaining exact shape and size of cluster. This paper proposed an improved irregularly shaped spatio-temporal abnormal cluster pattern mining algorithm stAntScan. The algorithm constructs the spatio-temporal neighborhood matrix by a newly defined 26 directions spatio-temporal neighbor cells. Then the algorithm improves the ant colony optimization based method to fit for spatio-temporal scanning on three-dimensional large data set. In the end, the Monte Carlo simulation method is used to test the significance of clusters. Experimental results on both simulated data and real Weibo check-in data have testified the efficiency and accuracy of stAntScan on irregularly shaped spatio-temporal abnormal cluster pattern mining. And compared with the classical SaTScan, it gets much better results in finding exact shape and size of clusters.
  • [1]
    王劲峰.空间分析[M].北京:科学出版社, 2006

    Wang Jinfeng. Spatial Analysis[M]. Beijing:Science Press, 2006
    [2]
    王远飞, 何洪林.空间数据分析方法[M].北京:科学出版社, 2007

    Wang Yuanfei, He Honglin. Methods for Spatial Data Analysis[M]. Beijing:Science Press, 2007
    [3]
    Tango T, Takahashi K, Kohriyama K. A Space-time Scan Statistic for Detecting Emerging Outbreaks[J]. Biometrics, 2011, 67(1):106-115 doi: 10.1111/j.1541-0420.2010.01412.x
    [4]
    Lima M S D, Duczmal L H. Adaptive Likelihood Ratio Approaches for the Detection of Space-time Disease Clusters[J]. Computational Statistics and Data Analysis, 2014, 77:352-370 doi: 10.1016/j.csda.2014.03.015
    [5]
    Costa M A, Kulldorff M. Maximum Linkage Space-time Permutation Scan Statistics for Disease Outbreak Detection[J]. International Journal of Health Geographics, 2014:13-20, doi:10. 1186/1476-072x-13-20
    [6]
    Kulldorff M, Tango T, Park P J. Power Comparisons for Disease Clustering Tests[J]. Computational Statistics & Data Analysis, 2003, 42(4):665-684 https://compbio.hms.harvard.edu/publications/power-comparisons-disease-clustering-tests
    [7]
    王海军, 邓羽, 王丽, 等.基于数据场的C-均值聚类方法研究[J].武汉大学学报·信息科学版, 2009, 34(5):626-629 http://ch.whu.edu.cn/CN/abstract/abstract1268.shtml

    Wang Haijun, Deng Yu, Wang Li, et al. A C-means Algorithm Based on Data Field[J]. Geomatics and Information Science of Wuhan University, 2009, 34(5):626-629 http://ch.whu.edu.cn/CN/abstract/abstract1268.shtml
    [8]
    邓敏, 彭东亮, 刘启亮, 等.一种基于场论的层次空间聚类算法[J].武汉大学学报·信息科学版, 2011, 36(7):847-852 http://ch.whu.edu.cn/CN/abstract/abstract589.shtml

    Deng Min, Peng Dongliang, Liu Qiliang, et al. A Hierarchical Spatial Clustering Algorithm Based on Field Theory[J]. Geomatics and Information Science of Wuhan University, 2010, 36(7):847-852 http://ch.whu.edu.cn/CN/abstract/abstract589.shtml
    [9]
    邓敏, 刘启亮, 李光强, 等.一种基于似最小生成树的空间聚类算法[J].武汉大学学报·信息科学版, 2010, 35(11):1360-1364 http://ch.whu.edu.cn/CN/abstract/abstract1115.shtml

    Deng Min, Liu Qiliang, Li Guangqiang, et al. A Spatial Clustering Algorithm Based on Minimum Spanning Tree-liike[J]. Geomatics and Information Science of Wuhan University, 2010, 35(11):1360-1364 http://ch.whu.edu.cn/CN/abstract/abstract1115.shtml
    [10]
    Lawson A B. Statistical Methods in Spatial Epidemiology[M]. Chichester:John Wiley & Sons, Ltd, 2006
    [11]
    Openshaw S, Charlton M, Wymer C, et al. A Mark Geographical Analysis Machine for the Automated Analysis of Point Data Sets[J]. Int J Geogr Inf Sci, 1987, 1(4):335-358 doi: 10.1080/02693798708927821
    [12]
    Kulldorff M, Nagarwalla N. Spatial Disease Clusters:Detection and Inference[J]. Statistics in Medicine, 1995, 14:799-810 doi: 10.1002/(ISSN)1097-0258
    [13]
    Kulldorff M. A Spatial Scan Statistics[J]. Communstatist-theory Meth, 1997, 26(6):1481-1496 doi: 10.1080/03610929708831995
    [14]
    Kulldorff M, Athas W, Feurer E, et al. Evaluating Cluster Alarms:A Space-time Scan Statistic and Brain Cancer in Los Alamos, New Mexico[J]. Am J Public Health, 1998, 88(9):1377-1380 doi: 10.2105/AJPH.88.9.1377
    [15]
    Kulldorff M. Prospective Time Periodic Geographical Disease Surveillance Using a Scan Statistic[J]. J R Stat Soc Ser A-Stat Soc, 2001, 164:61-72 doi: 10.1111/rssa.2001.164.issue-1
    [16]
    Kulldorff M, Heffernan R, Hartman J, et al. A Space-time Permutation Scan Statistic for Disease Outbreak Detection[J]. PLOS Medicine, 2005, 2(3):216-224 https://static-content.springer.com/esm/art%3A10.1186%2F1476-072X-13-20/MediaObjects/12942_2014_589_MOESM3_ESM.pdf
    [17]
    Demattei C, Molinari N, Daures J P. Arbitrarily Shaped Multiple Spatial Cluster Detection for Case Event Data[J]. Computational Statistics & Data Analysis:2007, 51(8):3931-3945 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.488.6988&rep=rep1&type=pdf
    [18]
    Cucala L. A Flexible Spatial Scan Test for Case Event Data[J]. Computational Statistics & Data Analysis, 2009, 53(8):2843-2850 https://www.researchgate.net/publication/46494087_A_flexible_spatial_scan_test_for_case_event_data
    [19]
    Patil G P, Taillie C. Upper Level Set Scan Statistic for Detecting Arbitrarily Shaped Hotspots[J]. Environ Ecol Stat, 2004, 11(2):183-197 doi: 10.1023/B:EEST.0000027208.48919.7e
    [20]
    Tango T, Takahashi K. A Flexibly Shaped Spatial Scan Statistic for Detecting Clusters[J]. International Journal of Health Geographics, 2005, 4(11):1-15 https://www.researchgate.net/publication/7836115_A_Flexibly_Shaped_Spatial_Scan_Statistic_for_Detecting_Clusters
    [21]
    Duczmal L, Kulldorff M, Huang L. Evaluation of Spatial Scan Statistics for Irregularly Shaped Clusters[J]. J Comput Graph Stat, 2006, 15(2):428-442 doi: 10.1198/106186006X112396
    [22]
    Duczmal L, Cancado A L F, Takahashi R H C, et al. A Genetic Algorithm for Irregularly Shaped Spatial Scan Statistics[J]. Computational Statistics & Data Analysis, 2007, 52(1):43-52 http://www.sciencedirect.com/science/article/pii/S0167947307000199
    [23]
    Janeja V, Atluri V. Random Walks to Identify Anomalous Free-form Spatial Scan Windows[J]. IEEE Transactions on Knowledge and Data Engineering, 2008, 20(10):1378-1392 doi: 10.1109/TKDE.2008.96
    [24]
    Pei Tao, Wan You, Jiang Yong, et al. Detecting Arbitrarily Shaped Clusters Using Ant Colony Optimization[J]. Int J Geogr Inf Sci, 2011, 25(10):1575-1595 doi: 10.1080/13658816.2010.533674
    [25]
    Wan You, Pei Tao, Zhou Chenghu, et al. ACOMCD:A Multiple Cluster Detection Algorithm Based on the Spatial Scan Statistic and Ant Colony Optimization[J]. Computational Statistics & Data Analysis, 2012, 56(2):283-296 https://www.researchgate.net/publication/220056164_ACOMCD_A_multiple_cluster_detection_algorithm_based_on_the_spatial_scan_statistic_and_ant_colony_optimization
    [26]
    段海滨.蚁群算法原理及其应用[M].北京:科学出版社, 2005

    Duan Haibin. Ant Colony Optimization:Principle and Applications[M]. Beijing:Science Press, 2005
  • Related Articles

    [1]YUE Han, ZHU Xinyan, GUO Wei, SHE Bing, GAO Chao. A Method for Determining the Critical Spatial Threshold of Spatio-Temporal Interaction for the Knox Test[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1719-1724. DOI: 10.13203/j.whugis20170017
    [2]TANG Jianbo, LIU Qiliang, LIU Bo, DENG Min, HUANG Jincai, HU Weisong. A Spatio-temporal Clustering Method Based on Permutation Test[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 503-511. DOI: 10.13203/j.whugis20141016
    [3]LI Guangqiang, ZENG Shaoqin, DENG Min, XIAO Qiuyong. Employing a Centroid Transferring Curve to Spatio-temporal Evolution Patterns[J]. Geomatics and Information Science of Wuhan University, 2013, 38(8): 940-944.
    [4]MA Ronghua, HE Zengyou. Mining Complete and Correct Frequent Neighboring Class Sets from Spatial Databases[J]. Geomatics and Information Science of Wuhan University, 2007, 32(2): 112-114.
    [5]GE Xiaosan. On Spatial Knowledge Discovery and Data Mining in Grid Environment[J]. Geomatics and Information Science of Wuhan University, 2006, 31(12): 1105-1107.
    [6]JIA Zelu, LIU Yaolin, ZHANG Tong. Design and Development of System Based on Visual Interactive Spatial Data Mining[J]. Geomatics and Information Science of Wuhan University, 2006, 31(10): 916-919.
    [7]WANGXinzhou. Spatial Data Processing and Spatial Data Mining[J]. Geomatics and Information Science of Wuhan University, 2006, 31(1): 1-4.
    [8]WANG Shuliang, WANG Xinzhou, ZENG Xuping, SHI Wenzhong. View Angle of Landslide-Monitoring Data Mining[J]. Geomatics and Information Science of Wuhan University, 2004, 29(7): 608-610,627.
    [9]LI Deren, WANG Shuliang, LI Deyi, WANG Xinzhou. Theories and Technologies of Spatial Data Mining and Knowledge Discovery[J]. Geomatics and Information Science of Wuhan University, 2002, 27(3): 221-233.
    [10]LI Deren, WANG Shuliang, SHI Wenzhong, WANG Xinzhou. On Spatial Data Mining and Knowledge Discovery (SDMKD)[J]. Geomatics and Information Science of Wuhan University, 2001, 26(6): 491-499.
  • Cited by

    Periodical cited type(5)

    1. 王钰辉,阳孟杰,周梦杰,周楷淳. 面向地理流的双变量时空扫描统计方法. 测绘科学. 2024(01): 204-215 .
    2. 王峥,程昌秀,李畅. 时空Moran散点图及其在中国干旱时空聚集区识别中的应用. 地球信息科学学报. 2022(07): 1301-1311 .
    3. 张亚楠,龙华,邵玉斌,杜庆治,陈腾飞. 基于历史预警准确率的时空重排扫描最大扫描半径优化方法. 地理与地理信息科学. 2021(04): 16-21 .
    4. 杨威,龙华,王美. 基于历史命中率的时空重排扫描最大搜索半径选取方法及应用实验. 地理与地理信息科学. 2020(02): 22-27 .
    5. 杨振凯,李响,陈达. 时空对象的聚类方法与应用初探. 地理信息世界. 2018(02): 40-44 .

    Other cited types(2)

Catalog

    Article views (1472) PDF downloads (452) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return