YUE Han, ZHU Xinyan, GUO Wei, SHE Bing, GAO Chao. A Method for Determining the Critical Spatial Threshold of Spatio-Temporal Interaction for the Knox Test[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1719-1724. DOI: 10.13203/j.whugis20170017
Citation: YUE Han, ZHU Xinyan, GUO Wei, SHE Bing, GAO Chao. A Method for Determining the Critical Spatial Threshold of Spatio-Temporal Interaction for the Knox Test[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1719-1724. DOI: 10.13203/j.whugis20170017

A Method for Determining the Critical Spatial Threshold of Spatio-Temporal Interaction for the Knox Test

Funds: 

The Open Research Fund Program of Key Laboratory of Police Geographic Information Technology, Ministry of Public Security 2016LPGIT05

More Information
  • Author Bio:

    YUE Han, PhD, specializes in the theories and methods of spatio-temporal data analysis.E-mail:hanygeo@163.com

  • Corresponding author:

    GUO Wei, associate professor.E-mail:guowei-lmars@whu.edu.cn

  • Received Date: August 03, 2017
  • Published Date: November 04, 2018
  • City crimes tend to be clustered spatially and temporally. Knox test is an effective way to detect such interactions, however, this method has been criticized as being subjective because the determination of critical distances is arbitrary. This paper begins with an introduction of the Knox test and some common methods to select the spatial thresholds. Then a new approach is proposed to detect critical distances based on the average nearest neighborhood distance. Burglary, electric vehicle theft and pick pocketing events in Wuhan city are used as experimental data to validate the method. Results show that, compared with four common criteria, i.e., empirical distance, mean distance, Ripley's K function threshold and natural breaks classification, the method we proposed is able to detect spatio-temporal interaction patterns of different events more effectively. The analysis results provide a reference for selecting critical distances for the Knox test.
  • [1]
    Grubesic T H, Mack E A. Spatio-Temporal Interaction of Urban Crime[J].Journal of Quantitative Criminology, 2008, 24(3):285-306 doi: 10.1007/s10940-008-9047-5
    [2]
    Knox E G, Bartlett M S. The Detection of Space-Time Interaction[J]. Applied Statistics, 1964, 13(1):25-29 doi: 10.2307/2985220
    [3]
    Mantel N. The Detection of Disease Clustering and a Generalized Regression Approach[J]. Cancer Research, 1967, 27(2):209-220 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0216388429
    [4]
    Jacquez G M. A K Nearest Neighbor Test for Space-Time Interaction[J]. Statistics in Medicine, 1996, 15(18):1935-1949 doi: 10.1002/(ISSN)1097-0258
    [5]
    Kulldorff M, Hjalmars U. The Knox Method and Other Tests for Space-Time Interaction[J]. Biometrics, 1999, 55(2):544-552 doi: 10.1111/j.0006-341X.1999.00544.x
    [6]
    Sonesson C, Bock D. A Review and Discussion of Prospective Statistical Surveillance in Public Health[J]. Journal of the Royal Statistical Society:Series A (Statistics in Society), 2003, 166(1):5-21 doi: 10.1111/rssa.2003.166.issue-1
    [7]
    Black W R. Transportation:A Geographical Analysis[M]. New York:Guilford Press, 2003
    [8]
    佘冰, 朱欣焰, 呙维, 等.基于空间点模式分析的城市管理事件空间分布及演化—以武汉市江汉区为例[J].地理科学进展, 2013, 32(6):924-931 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkxjz201306009

    She Bing, Zhu Xinyan, Guo Wei, et al. Spatial Distribution and Evolution of City Management Events Based on the Spatial Point Pattern Analysis:A Case Study of Jianghan District, Wuhan City[J]. Progress in Geography, 2013, 32(6):924-931 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkxjz201306009
    [9]
    徐冲, 柳林, 周素红. DP半岛街头抢劫案件的临近重复发生模式[J].地理研究, 2015, 34(2):384-394 http://d.old.wanfangdata.com.cn/Periodical/dlyj201502017

    Xu Chong, Liu Lin, Zhou Suhong. Patterns of Near-Repeat Street Robbery in DP Peninsula[J]. Geographical Research, 2015, 34(2):384-394 http://d.old.wanfangdata.com.cn/Periodical/dlyj201502017
    [10]
    Ye X, Xu X, Lee J, et al. Space-Time Interaction of Residential Burglaries in Wuhan, China[J].Applied Geography, 2015, 60:210-216 doi: 10.1016/j.apgeog.2014.11.022
    [11]
    Johnson S D, Bowers K J. The Stability of Space-Time Clusters of Burglary[J].The British Journal of Criminology, 2004, 44(1):55-65 doi: 10.1093/bjc/44.1.55
    [12]
    Elmes G, Roedl G. The Use of Geospatial Information Technology to Advance Safer College Campuses and Communities[M]//Leitner M. Crime Modeling and Mapping Using Geospatial Technologies. Netherlands: Springer, 2013
    [13]
    Kalantari M, Yaghmaei B, Ghezelbash S. Spatio-Temporal Analysis of Crime by Developing a Method to Detect Critical Distances for the Knox Test[J].International Journal of Geographical Information Science, 2016, 30(11):1-19 doi: 10.1080/13658816.2016.1174867?journalCode=tgis20
    [14]
    刘巧兰, 李晓松, 冯子健, 等. Knox方法在传染病时空聚集性探测中的应用[J].中华流行病学杂志, 2007, 28(8):802-805 doi: 10.3760/j.issn:0254-6450.2007.08.019

    Liu Qiaolan, Li Xiaosong, Feng Zijian, et al. Study on the Application of Knox Method to Temporal-Spatial Cluster for Infectious Diseases[J]. Chinese Journal of Epidemiology, 2007, 28(8):802-805 doi: 10.3760/j.issn:0254-6450.2007.08.019
    [15]
    Townsley M, Homel R, Chaseling J. Infectious Burglaries:A Test of the Near Repeat Hypothesis[J].The British Journal of Criminology, 2003, 43(3):615-633 doi: 10.1093/bjc/43.3.615
    [16]
    de Smith M J, Goodchild M F, Longley P. Geospatial Analysis:A Comprehensive Guide to Principles, Techniques and Software Tools[M]. 2nd ed. Leicester, United Kingdom:The Winchelsea Press, 2007
    [17]
    Ripley B D. The Second-Order Analysis of Stationary Point Processes[J].Journal of Applied Probability, 1976, 13(2):255-266 doi: 10.2307/3212829
    [18]
    张健, 郝占庆, 宋波, 等.长白山阔叶红松林中红松与紫椴的空间分布格局及其关联性[J].应用生态学报, 2007, 18(8):1681-1687 http://d.old.wanfangdata.com.cn/Periodical/yystxb200708001

    Zhang Jian, Hao Zhanqing, Song Bo, et al. Spatial Distribution Patterns and Associations of Pinus Koraiensis and Tilia Amurensis in Broad-Leaved Korean Pine Mixed Forest in Changbai Mountains[J]. Chinese Journal of Applied Ecology, 2007, 18(8):1681-1687 http://d.old.wanfangdata.com.cn/Periodical/yystxb200708001
    [19]
    Tobler W R. A Computer Movie Simulating Urban Growth in the Detroit Region[J]. Economic Geo-graphy, 1970, 46(sup1):234-240 doi: 10.2307-143141/
    [20]
    Clark P J, Evans F C. Distance to Nearest Neighbor as a Measure of Spatial Relationships in Populations[J]. Ecology, 1954, 35(4):445-453 doi: 10.2307/1931034
    [21]
    朱欣焰, 周成虎, 呙维, 等.全息位置地图概念内涵及其关键技术初探[J].武汉大学学报·信息科学版, 2015, 40(3):285-295 http://ch.whu.edu.cn/CN/abstract/abstract3199.shtml

    Zhu Xinyan, Zhou Chenghu, Guo Wei, el al. Preliminary Study on Conception and Key Technologies of the Location-Based Pan-Information Map[J]. Geomatics and Information Science of Wuhan University, 2015, 40(3):285-295 http://ch.whu.edu.cn/CN/abstract/abstract3199.shtml
    [22]
    Duan Lian, Ye Xinyue, Hu Tao, et al. Prediction of Suspect Location Based on Spatiotemporal Semantics[J].ISPRS International Journal of Geo-Information, 2017, 6(7):185-1-185-27 doi: 10.3390/ijgi6070185
  • Cited by

    Periodical cited type(5)

    1. 魏东,张天祎. Knox特征优化在网格化犯罪时空预测中的应用. 小型微型计算机系统. 2022(11): 2456-2464 .
    2. 李保珍,张诗莹,郭红建. 基于贝叶斯理论的异常点阈值自动识别. 统计与决策. 2021(19): 5-10 .
    3. 周雨石,卢小平,余振宝,陶晓晓. 时空聚类的犯罪属性识别方法. 测绘科学. 2020(01): 171-179 .
    4. 林静静,张铁威,李秀央. 疾病时空聚集分析的研究与进展. 中华流行病学杂志. 2020(07): 1165-1170 .
    5. 吴佩洁,孟祥海,曹梦迪. 城市交通事故多发点鉴别与时空模式挖掘. 中国安全科学学报. 2020(11): 127-133 .

    Other cited types(8)

Catalog

    Article views (2713) PDF downloads (274) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return