SHEN Yonglin, LIU Xiuguo, WU Lixin, SU Hongjun, HE Hao. A Local Spectral-spatial Similarity Measure for Bad Line Correction in Hyperion Hyperspectral Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 456-462. DOI: 10.13203/j.whugis20150007
Citation: SHEN Yonglin, LIU Xiuguo, WU Lixin, SU Hongjun, HE Hao. A Local Spectral-spatial Similarity Measure for Bad Line Correction in Hyperion Hyperspectral Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 456-462. DOI: 10.13203/j.whugis20150007

A Local Spectral-spatial Similarity Measure for Bad Line Correction in Hyperion Hyperspectral Data

Funds: 

The National Natural Science Foundation of China Nos. 41501459, 41201341

the China Postdoctoral Science Foundation No.2013M542086

the Fundamental Research Funds for the Central Universities No.CUGL140834

More Information
  • Author Bio:

    SHEN Yonglin, PhD, specializes in the hyperspectral remote sensing information processing and applications.shenyl@cug.edu.cn

  • Received Date: July 24, 2015
  • Published Date: April 04, 2017
  • Hyperion hyperspectral data are frequently contaminated with bad lines, which directly affect the accuracy of the following-up applications. In this paper, a local spectral-spatial similarity measure, or simply LS3M, was proposed, in aids of the Hyperion hyperspectral data characterizing and bad line repairing. Not only the spatial similarity between target pixel and neighborhood similar pixels in the Hyperion hyperspectral image, but the similarity in spectral dimension was considered. That is, LS3M was constituted of spatial similarity measure and spectral similarity measures. The former was measured by Euclidean distance and the latter one combined Canberra distance (CD) and spectral correlation angle (SCA). Considering the radiance characteristics of Hyperion hyperspectral at different bands, information entropy was introduced to constrain the combination of CD and SCA measures with respect to the discrepancies of Hyperion radiance characteristics in different wavelengths. In terms of neighbor search of similar pixels, this paper introduced similarity mean and variance to realize the dynamic setting of the threshold of the spectral combination process. To verify the proposed method, Hyperion hyperspectral data of six typical scenes (i.e., deserts, grasslands, forests, suburbs, coastal cities and inland cities) were utilized to make an experimental study on simulated bad lines and real bad lines in Hyperion image. Besides, a comparison with neighborhood average method, single spectral similarity measures and combined spectral similarity measures was conducted. These results demonstrated that LS3M owned a higher accuracy and better stability on bad line repair, especially in depicting object boundary and topological relations between ground objects.
  • [1]
    Han T, Goodenough D G, Dyk A, et al. Detection and Correction of Abnormal Pixels in Hyperion images[C]. IGARSS, Toronto, Canada, 2002
    [2]
    Goodenough D G, Dyk A, Niemann K O, et al. Processing Hyperion and ALI for Forest Classification[J]. IEEE Transactions Geoscience and Remote Sensing, 2003, 41(6):1 321-1 331 doi: 10.1109/TGRS.2003.813214
    [3]
    Chen J, Zhu X, Vogelmann J E, et al. A Simple and Effective Method for Filling Gaps in Landsat ETM+ SLC-off Images[J]. Remote Sensing of Environment, 2011, 115(4):1 053-1 064 doi: 10.1016/j.rse.2010.12.010
    [4]
    杜培军,唐宏,方涛. 高光谱遥感光谱相似性度量算法与若干新方法研究[J]. 武汉大学学报·信息科学版, 2006, 31(2):112-115 http://ch.whu.edu.cn/CN/abstract/abstract2380.shtml

    Du Peijun, Tang Hong, Fang Tao. Algorithms for Spectral Similarity Measure in Hyperspectral RS[J]. Geomatics and Information Science of Wuhan University, 2006, 31(2):112-115 http://ch.whu.edu.cn/CN/abstract/abstract2380.shtml
    [5]
    Van der M F. The Effectiveness of Spectral Similarity Measures for the Analysis of Hyperspectral Imagery[J]. Journal of Applied Earth Observation and Geoinformation, 2006, 8(1):3-17 doi: 10.1016/j.jag.2005.06.001
    [6]
    Vishnu S, Nidamanuri R R, Bremananth R. Spectral Material Mapping Using Hyperspectral Imagery:A Review of Spectral Matching and Library Search Methods[J]. Geocarto International,2012, 28(2):171-190 https://www.researchgate.net/publication/254237722_Spectral_material_mapping_using_hyperspectral_imagery_A_review_of_spectral_matching_and_library_search_methods
    [7]
    Homayouni S, Roux M. Hyperspectral Image Analysis for Material Mapping Using Spectral Matching[C]. ISPRS, Istanbul, Turkey, 2004
    [8]
    Du Y, Chang C, Ren H, et al. New Hyperspectral Discrimination Measure for Spectral Characterization[J]. Optical Engineering,2004, 43(8):1 777-1 786 doi: 10.1117/1.1766301
    [9]
    Kumar N M, Seshasai M V R, Vara P, et al. A New Hybrid Spectral Similarity Measure for Discrimination Among Vigna Species[J]. International Journal of Remote Sensing,2011, 32(14):4 041-4 053 doi: 10.1080/01431161.2010.484431
    [10]
    张修宝,袁艳,景娟娟,等.信息散度与梯度角正切相结合的光谱区分方法[J].光谱学与光谱分析,2011,31(3):853-857 http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201103072.htm

    Zhang Xiubao, Yuan Yan, Jing Juanjuan, et al. Spectral Discrimination Method Information Divergence Combined with Gradient Angle[J]. Spectroscopy and Spectral Analysis,2011,31(3):853-857 http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201103072.htm
    [11]
    Teska B M, Li C, Winn B C, et al. Comparison of Quantitative Spectral Similarity Analysis Methods for Protein Higher-Order Structure Confirmation[J]. Analytical Biochemistry,2013, 434(1):153-165 doi: 10.1016/j.ab.2012.11.018
    [12]
    Lance G N, Williams W T. Computer Programs for Hierarchical Polythetic Classification ("Similarity Analysis")[J]. Computer Journal,1966, 9 (1):60-64 doi: 10.1093/comjnl/9.1.60
    [13]
    Heij C, de Boer P, Franses P H, et al. Econometric Methods with Applications in Business and Economics[M]. New York:Oxford University Press Inc., 2004
    [14]
    Schwarz J, Staenz K. Adaptive Threshold for Spectral Matching of Hyperspectral Data[J]. Canadian Journal of Remote Sensing, 2001, 27(3):216-224
  • Related Articles

    [1]CAI Xianhua, LIU Kaili, HU Zhuoliang, ZHANG Yuan. An Algorithm for Constructing Road Network Using Block Polygon Topology[J]. Geomatics and Information Science of Wuhan University, 2021, 46(8): 1170-1177. DOI: 10.13203/j.whugis20190348
    [2]YANG Wei, AI Tinghua. Extracting Arterial Road Polygon from OpenStreetMap Data Based on Delaunay Triangulation[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1725-1731. DOI: 10.13203/j.whugis20160294
    [3]ZHANG Hao, WU Fang, GONG Xianyong, XU Junkui, ZHANG Juntao. A Parallel Factor-Based Method of Arterial Two-Lane Roads Recognition[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1123-1130. DOI: 10.13203/j.whugis20150122
    [4]WANG Xiao, QIAN Haizhong, LIU Hailong, HE Haiwei, CHEN Jingnan. A Hierarchical and Iterative Road Network Matching Method by Using Road Classification[J]. Geomatics and Information Science of Wuhan University, 2016, 41(8): 1072-1078. DOI: 10.13203/j.whugis20140441
    [5]LIU Hailong, QIAN Haizhong, WANG Xiao, HE Haiwei. Road Networks Global Matching Method Using Analytical Hierarchy Process[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5): 644-651. DOI: 10.13203/j.whugis20130350
    [6]LI Fei, LUAN Xuechen, YANG Bisheng, LI Qiuping. Automatic Topology Maintenance Approach for High-level Road Networks[J]. Geomatics and Information Science of Wuhan University, 2014, 39(6): 729-733. DOI: 10.13203/j.whugis20140115
    [7]LUAN Xuechen, YANG Bisheng, ZHANG Yunfei. Structural Hierarchy Analysis of Streets Based on Complex Network Theory[J]. Geomatics and Information Science of Wuhan University, 2012, 37(6): 728-732.
    [8]LI Qingquan, ZENG Zhe, YANG Bisheng, LIBijun. Betweenness Centrality Analysis for Urban Road Networks[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 37-41.
    [9]ZHU Qing, LI Yuan. Review of Road Network Models[J]. Geomatics and Information Science of Wuhan University, 2007, 32(6): 471-476.
    [10]DENG Hongyan, WU Fang, ZHAI Renjian. A Generalization Model of Road Networks Based on Genetic Algorithm[J]. Geomatics and Information Science of Wuhan University, 2006, 31(2): 164-167.
  • Cited by

    Periodical cited type(8)

    1. 高奎亮,刘冰,余旭初,余岸竹,孙一帆. 面向高光谱影像分类的网络结构自动搜索方法. 武汉大学学报(信息科学版). 2024(02): 225-235 .
    2. 崔林林,仙巍,柳锦宝. 产学研背景下遥感科学与技术专业”遥感原理与应用”实验教学改革探讨. 电脑与信息技术. 2023(01): 92-95 .
    3. 李杰,曾超,刘汇慧,李慧芳. 地学大数据背景下遥感课程的多阶段进阶混合式教学模式探索. 测绘通报. 2023(S2): 131-136 .
    4. 薛冰,赵冰玉,李京忠. 地理学视角下城市复杂性研究综述——基于近20年文献回顾. 地理科学进展. 2022(01): 157-172 .
    5. 桑国庆,唐志光,毛克彪,邓刚,王靖文,李佳. 基于GEE云平台与Sentinel数据的高分辨率水稻种植范围提取——以湖南省为例. 作物学报. 2022(09): 2409-2420 .
    6. 徐恩恩,郭颖,陈尔学,李增元,赵磊,刘清旺. 基于无人机LiDAR和高空间分辨率卫星遥感数据的区域森林郁闭度估测模型. 武汉大学学报(信息科学版). 2022(08): 1298-1308 .
    7. 孙玉梅,刘昱豪,边占新,孙亮,陈敬周. 深度学习PaddlePaddle框架支持下的遥感智能视觉平台研究与实现. 测绘通报. 2021(11): 65-69+75 .
    8. 陈晓峰. 光学遥感立体测绘技术及其发展趋势研究. 光源与照明. 2021(11): 69-71 .

    Other cited types(8)

Catalog

    Article views PDF downloads Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return