ZHANG Shengjun, JIN Taoyong, CHU Yonghai, KONG Xiangxue. Estimation of the Resolution Capability of the Cryosat-2 Altimeter[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 759-764. DOI: 10.13203/j.whugis20140829
Citation: ZHANG Shengjun, JIN Taoyong, CHU Yonghai, KONG Xiangxue. Estimation of the Resolution Capability of the Cryosat-2 Altimeter[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 759-764. DOI: 10.13203/j.whugis20140829

Estimation of the Resolution Capability of the Cryosat-2 Altimeter

Funds: 

The National Basic Research Program (973 Program) of China No.2013CB733301

the National Natural Science Foundation of China Nos.41210006,41304003

the National High Technology Research & Development Program (Program 863) of China No.2013AA122502

the Open Funds of the Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan University No.15-02-09

More Information
  • Author Bio:

    ZHANG Shengjun, PhD candidate, specializes in satellite altimeter data processing. E-mail: zhangshengjun@whu.edu.cn

  • Received Date: March 26, 2015
  • Published Date: June 04, 2016
  • The cryosat-2 satellite recently published its first altimeter dataincluding periodically drifting orbit and dense ground tracks. These data can be used to improve the accuracy and resolution of the marine gravity field. In this paper, we constructs auto-regressive models of the altimeter data series by considering two aspects of signal and noise, and propose a new method called the signal-to-noise ratio analytical method for estimating the resolution capability of Cryosat-2 data. in five test cases, this new method offers a consistent alternative to the traditional spectral correlation method. The resolution capability of Cryostat-2 altimeter data from single cycle is in the range of 23 km~33 km, with an average value of 27 km, and better than 38 km, 43 km and 37 km of the Geosat/ERM, ERS-1/ERM and T/P data. This result shows that the Cryosat-2 altimeter data has a lower noise level and a higher geoid signal recognition. Therefore, it is reasonable to believe that the Cryostat-2 could provide shorter wavelength information for the construction of marine gravity field with higher resolution.
  • [1]
    Anzenhofer M, Gruber T. Fully Reprocessed ERS-1 Altimeter Data from 1992 to 1995:Feasibility of the Detection of Long Term Sea Level Change[J]. Journal of Geophysical Research,1998, 103(C4):8089-8112
    [2]
    李大炜,李建成,金涛勇,等.利用多代卫星测高资料监测1993~2011年全球海平面变化[J].武汉大学学报·信息科学版,2012,37(12):1421-1424

    Li Dawei,Li Jiancheng, Jin Taoyong, et al. Monitoring Global Sea Level Change from 1993 to 2011 Using TOPEX and Jason Altimeter Missions[J].Geomatics and Information Science of Wuhan University, 2012,37(12):1421-1424
    [3]
    Marsh J G, Koblinsky J, Zwally H J, et al. A Global Mean Sea Surface based Upon GEOS3 and Seasat Altimeter Data[J]. Journal of Geophysical Research, 1992, 97(B4):4915-4921
    [4]
    金涛勇,李建成,姜卫平,等.基于多源卫星测高数据的新一代全球平均海面高模型[J].测绘学报,2011,40(6):723-729

    Jin Taoyong, Li Jiancheng, Jiang Weipin, et al. The New Generation of Global Mean Sea Surface Height Model Based on Multialtimetric Data[J]. Acta Geodaetica et Cartographica Sinica, 2011,40(6):723-729
    [5]
    章传银,李建成,晁定波,等.联合卫星测高和海洋物理数据计算近海稳态海面地形[J].武汉测绘科技大学学报,2000,25(6):500-504

    Zhang Chuanyin, Li Jiancheng, Chao Dingbo, et al. Calculating Stationary Sea Surface Topography of Coastal Area with Altimeter and Oceanographic Data[J]. Journal of Wuhan Technical University of Surveying and Mapping, 2000,25(6):500-504
    [6]
    邓凯亮,暴景阳,章传银,等.联合多代卫星测高数据确定中国近海稳态海面地形模型[J].测绘学报,2009,38(2):114-119

    Deng Kailiang, Bao Jingyang, Zhang Chuanyin, et al. The Determination of Quasi-Stationary Sea Surface Topography over China Sea by Using Multi-altimeter Data[J]. Acta Geodaetica et CartographicaSinica, 2009,38(2):114-119
    [7]
    Laxon S W, Giles K A, Ridout A L, et al. CryoSat-2 Estimates of Arctic Sea Ice Thickness and Volume[J].Geophysical Research Letters,2013, 40:732-737
    [8]
    王虎彪,王勇,陆洋.联合多种测高数据确定中国边缘海及全球海域的垂线偏差[J].武汉大学学报·信息科学版,2007,32(9):770-773

    Wang Hubiao, Wang Yong, Lu Yang. High Precision Vertical Deflection over China Marginal Sea and Global Sea Derived from Multi-satellite Altimeter[J]. Geomatics and Information Science of Wuhan University, 2007, 32(9):770-773
    [9]
    Sandwell D, Smith W H F. Marine Gravity Anomaly from Geosat and ERS-1 Satellite Altimetry[J]. Journal of Geophysical Research, 1997, 102(B5):10039-10054
    [10]
    Andersen O B, Knudsen P. Global Marine Gravity Field from the ERS-1 and Geosat Geodetic Mission Altimetry[J]. Journal of Geophysical Research, 1998, 103(C4):8129-8137
    [11]
    李建成,宁津生,陈俊勇,等.中国海域大地水准面和重力异常的确定[J]. 测绘学报,2003,32(2):114-119

    Li Jiancheng, Ning Jinsheng, Chen Junyong, et al. Geoid Determination in China Sea Areas[J]. Acta Geodaetica et Cartographica Sinica, 2003,32(2):114-119
    [12]
    杨元德,鄂栋臣,黄金维,等.Geosat/GM波形重跟踪反演中国沿海区域重力异常[J].武汉大学学报·信息科学版,2008,33(12):1288-1291

    Yang Yuande, E Dongchen, Hwang Cheinway, et al. Chinese Coastal Gravity Anomalies from Waveform Retracked Geosat/GM Altimetry[J]. Geomatics and Information Science of Wuhan University, 2008,33(12):1288-1291
    [13]
    Yale M M, Sandwell D, Smith W H F. Comparison of Along-Track Resolution of Stacked Geosat, ERS-1 and Topex Satellite Altimeters[J]. Journal of Geophysical Research, 1995, 100(B8):15117-15127
    [14]
    Wingham D J, Francis C R, Baker S, et al. CryoSat:A Mission to Determine the Fluctuations in Earth's Land and Marine Ice Fields[J]. Adcances in Space Research,2006, 37:841-871
    [15]
    Brammer R F, Sailor R V. Preliminary Estimates of the Resolution Capability of the Seasat Radar Altimeter[J].Geophysical Research Letters, 1998, 7(3):193-196
    [16]
    Sailor R V, Driscoll M L. Comparison of Noise Models and Resolution Capabilities for Satellite Radar Altimeters[C]. Oceans 92 Mastering the Oceans Through Technology, Newport, 1992
    [17]
    Marks K M, Sailor R V. Comparison of GEOS-3 and Seasat Altimeter Resolution Capabilities[J]. Geophysical Research Letters, 1986, 13(7):697-700
    [18]
    Maus S, Green C M, Fairhead J D. Improved Ocean-Geoid Resolution from Retracked ERS-1 Satellite Altimeter Waveforms[J]. Geophysical Journal International, 1998, 134(1):243-253
    [19]
    张玲华,郑宝玉.随机信号处理[M].北京:清华大学出版社,2003

    Zhang Linghua, Zheng Baoyu. Stochastic Signal Processing[M].Beijing:Press of Tsinghua University, 2003
    [20]
    Sailor R V. Signal Processing Techniques, Geoid and Its Geophysical Interpretation[M]. Boca Raton, FL:CRC Press, 1993
    [21]
    Labroue S, Boy F, Picot N, et al. First Quality Assessment of the Cryosat-2 Altimeter System over Ocean[J]. Advances in Space Research, 2012, 50:1030-1045
    [22]
    ESRIN, ESA and Mullard Space Science Laborator. Cryosat Product Handbook[EB/OL]. University College London, https://earth.esa.int/documents/10174/125272/CryoSat_Product_Handbook, 2012
    [23]
    Driscoll A L, Sailor R V. GFO On-Orbit Altimeter Noise Assessment[R]. NASA:NTRS, 2001
  • Related Articles

    [1]ZHOU Fangbin, ZOU Lianhua, LIU Xuejun, MENG Fanyi. Micro Landform Classification Method of Grid DEM Based on Convolutional Neural Network[J]. Geomatics and Information Science of Wuhan University, 2021, 46(8): 1186-1193. DOI: 10.13203/j.whugis20190311
    [2]ZOU Kun, WO Yan, XU Xiang. A Feature Significance-Based Method to Extract Terrain Feature Lines[J]. Geomatics and Information Science of Wuhan University, 2018, 43(3): 342-348. DOI: 10.13203/j.whugis20150373
    [3]CAO Zhenzhou, LI Manchun, CHENG Liang, CHEN Zhenjie. Progressive Transmission of Vector Curve Data over InternetCAO ZhenzhouLI Manchun[J]. Geomatics and Information Science of Wuhan University, 2013, 38(4): 475-479.
    [4]ZHENG Shunyi, HU Hualiang, HUANG Rongyong, JI Zheng. Realtime Ranging of Power Transmission Line[J]. Geomatics and Information Science of Wuhan University, 2011, 36(6): 704-707.
    [5]AI Bo, AI Tinghua, TANG Xinming. Progressive Transmission of River Network[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 51-54.
    [6]LIU Yan, LIU Jingnan, LI Tao, XIA Ye. Monitoring Damage of State Grid Transmission Tower in Bad Weather by High-Resolution SAR Satellites[J]. Geomatics and Information Science of Wuhan University, 2009, 34(11): 1354-1358.
    [7]YIN Hui, ZHANG Xiaohong, ZHANG Xiaowu, LIU Xingfa. Interference Analysis to Aerial Flight Caused by UHV Lines Using Airborne GPS[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7): 774-777.
    [8]WANG Cheng, HU Peng, LIU Xiaohang, LI Yunxiang. Automated Classification of Martian Landforms Based on Digital Terrain Analysis(DTA) Technology[J]. Geomatics and Information Science of Wuhan University, 2009, 34(4): 483-487.
    [9]ZHENG Jingjing, FANG Jinyun, HAN Chengde. Progressive Transmission Method of DEM Data Based on JPEG2000 Lossless-Compression[J]. Geomatics and Information Science of Wuhan University, 2009, 34(4): 395-399.
    [10]WANG Wei, DU Daosheng, XIONG Hanjiang, ZHONG Jing. 3D Modeling and Data Organization of Power Transmission[J]. Geomatics and Information Science of Wuhan University, 2005, 30(11): 986-990.
  • Cited by

    Periodical cited type(7)

    1. 邱龙. 基于无人机测绘图像的大面积地形变化特征提取方法. 北京测绘. 2024(06): 930-935 .
    2. 邓颖,蒋兴良,张志劲,曾蕴睿,马龙飞. 基于DEM分析的输电线路覆冰微地形分类识别及验证方法. 高电压技术. 2024(11): 4971-4980 .
    3. 巩鑫龙,田瑞,王孟. 220?kV正兰甲线所在微地形区域风场特性研究. 电力安全技术. 2024(11): 47-51 .
    4. 董慎学,石峰,刘刚,王有威,徐兆国. 垭口地形对输电线路风场分布特性影响分析. 重庆理工大学学报(自然科学). 2023(06): 340-346 .
    5. 吴建蓉,文屹,张啟黎,何锦强,张厚荣,龚博. 基于GIS的易覆冰微地形分类提取算法与三维应用. 高电压技术. 2023(S1): 1-5 .
    6. 周访滨,钟绍平,朱衍哲,杨自强,马国伟. 顾及爆燃地形特征的峡谷分级提取方法. 测绘科学. 2023(09): 89-98 .
    7. 胡京,邓颖,蒋兴良,曾蕴睿. 输电线路覆冰垭口微地形的特征提取与识别方法. 中国电力. 2022(08): 135-142 .

    Other cited types(0)

Catalog

    Article views PDF downloads Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return