LI Ming, ZHU Xinyan, DUAN Lian, GUO Wei, YAO Ming. A Case-based Reasoning Approach for Task-driven Remote Sensing Image Discovery under Spatial-Temporal Constrains[J]. Geomatics and Information Science of Wuhan University, 2017, 42(6): 768-774. DOI: 10.13203/j.whugis20140823
Citation: LI Ming, ZHU Xinyan, DUAN Lian, GUO Wei, YAO Ming. A Case-based Reasoning Approach for Task-driven Remote Sensing Image Discovery under Spatial-Temporal Constrains[J]. Geomatics and Information Science of Wuhan University, 2017, 42(6): 768-774. DOI: 10.13203/j.whugis20140823

A Case-based Reasoning Approach for Task-driven Remote Sensing Image Discovery under Spatial-Temporal Constrains

Funds: 

The National Basic Research Program of China 2012BAH35B03

the National Natural Science Foundation of China 41201405

the Open Research Fund of State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing 16 (Key 04)

the Special Research Fund of State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing 

the Open Fund of Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation 2015GXESPKF02

the Natural Science Foundation of Jiangxi Province 20151BAB207004

More Information
  • Author Bio:

    LI Ming, PhD, specializes in the intelligent geospatial information service. E-mail:liming10307@163.com

  • Corresponding author:

    ZHU Xinyan, PhD, professor. E-mail:geozxy@263.net

  • Received Date: December 21, 2015
  • Published Date: June 04, 2017
  • Remote sensing (RS) images are an important source of geospatial data. However, current approaches in task-driven RS images discovery establish links between tasks and RS image parameters directly, without spatial-temporal constraints, leading to hard maintenance and low query precision Moreover, the complex relationship between tasks and RS images under spatial-temporal constraints is difficult to model and represent by rules. Thus, this research proposes an location and time method that not only filters but also acts as spatial-temporal constraint in the discovery process, and exploits the relationships between tasks and RS data sources under spatial-temporal constraints through Case-based Reasoning (CBR). The RS application case representation model and similarity assessment model is proposed to support analogical reasoning in CBR. A prototype system was developed to validate this method. The results show that the method is a feasible approach that improves the service efficacy of remote sensing data.
  • [1]
    Karimi H A. Big Data: Techniques and Technologies in Geoinformatics[M]. Boca Raton, USA: CRC Press, 2014
    [2]
    Mechouche A, Abadie N, Prouteau E, et al. Ontology-Based Formal Specifications for User-Friendly Geospatial Data Discovery[M]. Berlin, Germany: Springer, 2013
    [3]
    Egenhofer M J. Toward the Semantic Geospatial Web[C]. ACM International Symposium on Advances in Geographic Information Systems, McLean, USA, 2002
    [4]
    Zhang C, Zhao T, Anselin L, et al. A Map-Reduce Based Parallel Approach for Improving Query Performance in a Geospatial Semantic Web for Disaster Response[J]. Earth Science Informatics, 2014, 8(3): 1-11 doi: 10.1007/s12145-014-0179-x
    [5]
    Wiegand N, García C. A Task-based Ontology Approach to Automate Geospatial Data Retrieval[J]. Transactions in GIS, 2007, 11(3): 355-376 doi: 10.1111/tgis.2007.11.issue-3
    [6]
    杨小忠, 贾占军, 刘士彬, 等.基于应用本体的多卫星遥感数据检索[J].遥感信息, 2007, 43(1): 30-36 http://www.cnki.com.cn/Article/CJFDTOTAL-YGXX200701007.htm

    Yang Xiaozhong, Jia Zhanjun, Liu Shilin, et al. Multi-satellites Remote Sensing Data Retrieval Based on Application Ontology[J]. Remote Sensing Information, 2007, 43(1): 30-36 http://www.cnki.com.cn/Article/CJFDTOTAL-YGXX200701007.htm
    [7]
    Molina M, Bayarri S. A Multinational SDI-Based System to Facilitate Disaster Risk Management in the Andean Community[J]. Computers & Geosciences, 2011, 37(9): 1 501-1 510 http://core.ac.uk/display/12001368
    [8]
    Zhu X, Li M, Guo W, et al. Semantic-Based User Demand Modeling for Remote Sensing Images Retrieval[C]. IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012
    [9]
    Li M, Zhu X, Guo W, et al. A Case-based Reasoning Approach for Task-Driven Remote Sensing Image Discovery Under Spatial Temporal Constraints[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2016, 9(1): 454-466 https://www.researchgate.net/publication/288842298_A_Case-Based_Reasoning_Approach_for_Task-Driven_Remote_Sensing_Image_Discovery_Under_Spatial-Temporal_Constraints
    [10]
    Atkinson P M, Aplin P. Spatial Variation in Land Cover and Choice of Spatial Resolution for Remote Sensing[J]. International Journal of Remote Sensing, 2004, 25(18): 3 687-3 702 https://eprints.soton.ac.uk/15430/
    [11]
    Cao C, Lam N S. Understanding the Scale and Resolution Effects in Remote Sensing and GIS[M]//Scale in Remote Sensing and GIS. New York, USA: CRC Press, 1997
    [12]
    Aamodt A, Plaza E. Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches[J]. AI Communications, 1994, 7(1): 39-59 http://industry.wanfangdata.com.cn/dl/Detail/ExternalResource?id=syjzgcxyxb200602032%5e5
    [13]
    Du Y, Wu D, Liang F, et al. Integration of Case-Based Reasoning and Object-Based Image Classification to Classify Spot Images: A Case Study of Aquaculture Land Use Mapping in Coastal Areas of Guangdong Province, China[J]. GIScience & Remote Sensing, 2013, 50(5): 574-589 http://agris.fao.org/openagris/search.do?recordID=US201500210937
    [14]
    杜云艳, 温伟, 曹锋.空间数据挖掘的地理案例推理方法及试验[J].地理研究, 2009, 28(5): 1 285-1 296 http://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ200905014.htm

    Du Yunyan, Wen Wei, Cao Feng. A Study on Spatial Data Mining Using Geo-CBR and Its Application[J]. Geographical Research, 2009, 28(5): 1 285-1 296 http://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ200905014.htm
    [15]
    苏理宏, 李小文, 黄裕霞.遥感尺度问题研究进展[J].地球科学进展, 2001, 16(4): 544-548 http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200104016.htm

    Su Lihong, Li Xiaowen, Huang Yuxia. An Review on Scale in Remote Sensing[J]. Advances in Earth Science. 2001, 16(4): 544-548 http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200104016.htm
    [16]
    韩鹏, 龚健雅.遥感尺度选择问题研究进展[J].遥感信息, 2008, 23(1): 96-99 http://www.cnki.com.cn/Article/CJFDTOTAL-YGXX200801024.htm

    Han Peng, Gong Jianya. A Review on Choice of Optimal Scale in Remote Sensing[J]. Remote Sensing Information, 2008, 23(1): 96-99 http://www.cnki.com.cn/Article/CJFDTOTAL-YGXX200801024.htm
    [17]
    Egenhofer M J, Al-Taha K K. Reasoning About Gradual Changes of Topological Relationships[M]//Theories and Methods of Spatio-Temporal Reasoning in Geographic Space. New York, USA: Springer, 1992
    [18]
    Bruns T, Egenhofer M. Similarity of Spatial Scenes[C]. International Symposium on Spatial Data Handling, London, UK, 1996
    [19]
    Liu H, Bao H, Xu D. Concept Vector for Similarity Measurement Based on Hierarchical Domain Structure[J]. Computing & Informatics, 2011, 30(5): 881-900 https://www.researchgate.net/publication/296845452_CONCEPT_VECTOR_FOR_SIMILARITY_MEASUREMENT_BASED_ON_HIERARCHICAL_DOMAIN_STRUCTURE
    [20]
    李德仁, 沈欣, 龚健雅, 等.论我国空间信息网络的构建[J].武汉大学学报·信息科学版, 2015, 40(6):711-715 http://ch.whu.edu.cn/CN/abstract/abstract3264.shtml

    Li Deren, Shen Xin, Gong Jianya, et al. On Construction of China's Space Information Network[J]. Geomatics and Information Science of Wuhan University, 2015, 40(6):711-715 http://ch.whu.edu.cn/CN/abstract/abstract3264.shtml
  • Related Articles

    [1]ZHU Tingting, LI Fei, ZHANG Shengkai, YUAN Lexian. Rock Outcrop Detection from RADARSAT-1 Datasets Based on Constant False Alarm[J]. Geomatics and Information Science of Wuhan University, 2016, 41(11): 1512-1517. DOI: 10.13203/j.whugis20150266
    [2]an wen, mengxian gwei. animp rovedclutterma pdetectionmethod[J]. Geomatics and Information Science of Wuhan University, 2015, 40(9): 1176-1179. DOI: 10.13203/j .whu g is20140449
    [3]Wang Feng, You Hongjian, Fu Xingyu. Auto-Adaptive Well-Distributed Scale-Invariant Feature for SAR Images Registration[J]. Geomatics and Information Science of Wuhan University, 2015, 40(2): 159-163.
    [4]he chu, zhangyu, liaoziqian, xuxin. compressive sensing based cfar target detection algorithm for sar image[J]. Geomatics and Information Science of Wuhan University, 2014, 39(7): 878-882.
    [5]YOU Hongjian, FU Kun. SAR Change Detection Based on Cluster Distribution Divergence[J]. Geomatics and Information Science of Wuhan University, 2008, 33(5): 454-456.
    [6]MAO Haifeng. Distributed GIS for Agriculture Based on J2EE[J]. Geomatics and Information Science of Wuhan University, 2004, 29(2): 140-143.
    [7]ZHOU Shijian, GUAN yunlan, LU Tieding, ZANG Deyan. The Analytical Collocation of the Error Distribution[J]. Geomatics and Information Science of Wuhan University, 2001, 26(5): 455-458.
    [8]Sun Haiyan, Yu Zongchou. The Digital Characters of the p-norm sample Distribution[J]. Geomatics and Information Science of Wuhan University, 1998, 23(3): 244-247.
    [9]Sun Haiyan, Yu Zongchou. The Sample Distributions of p-norm Population[J]. Geomatics and Information Science of Wuhan University, 1998, 23(2): 118-120.
    [10]Hu Zhendong, Da Hanqiao, Xia Linyuan. Distributed Computing Environment and Distributed Processing of Computer Network[J]. Geomatics and Information Science of Wuhan University, 1997, 22(3): 270-272.
  • Cited by

    Periodical cited type(2)

    1. 肖和平,赵宇恒,米素娟. 基于深度学习CaffeNet模型的综合交通设施场景分类与识别研究. 湖南交通科技. 2021(01): 140-145 .
    2. 杨杰,常永雷,李平湘,赵伶俐,史磊. 采用螺旋散射的SAR极化定标参考地物提取方法. 武汉大学学报(信息科学版). 2018(12): 2023-2029 .

    Other cited types(5)

Catalog

    Article views (1618) PDF downloads (426) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return