HE Lixin, KONG Bin, YANG Jing. An Automatic Method of the Depth Measurement of Static Objects in a Monocular Image[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 635-641. DOI: 10.13203/j.whugis20140656
Citation: HE Lixin, KONG Bin, YANG Jing. An Automatic Method of the Depth Measurement of Static Objects in a Monocular Image[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 635-641. DOI: 10.13203/j.whugis20140656

An Automatic Method of the Depth Measurement of Static Objects in a Monocular Image

Funds: The National Natural Science Foundation of China, Nos. 91120307, 61005010; the Natural Science Foundation of Department of Education of AnHuiProvince, Nos. KJ2013B230, KJ2013A226, KJ2015A162; the Quality Engineering of Higher Education of AnHuiProvince, Nos. 2015ckjh047, 2015ckjh048, 2015ckjh058, 2015ckjh061, 2015zy054; Key Constructive Discipline of Hefei University, No.2014xk08; Training Object for Academic Leader of Hefei University, No.2014dtr08.
More Information
  • Received Date: May 05, 2015
  • Published Date: May 04, 2016
  • Measurement of object depth information in an image is an important task in the stereo vision domain. An automatic method of the depth measurement from two images captured by an ordinary monocular camera is proposed. While keeping the parameters of camera constant, two images are captured at the distance between object and the lens definted as u and u+d, respectively. Objects in the images are acquired by the image segment method using the LBF model. The objects are matched automatically using the combined the relative difference ratios of entropy from the object image and the weighted HU invariant moment. The object depth can be calculated by a formula presented in this paper.. Experimental results show that the method is effective.
  • [1]
    Liu Qiong, Yang You, Gao Yue, et al. A Bayesian Framework for Dense Depth Estimation Based on Spatial-Temporal Correlation[J]. Neurocomputing, 2013,104(3):1-9
    [2]
    Sellent A, Favaro P. Optimized Aperture Shapes for Depth Estimation[J]. Pattern Recognition Letters, 2014,40(4):96-103
    [3]
    Sun Zhanli, Lam K M, Gao Qingwei. Depth Estimation of Face Images Using the Nonlinear Least-Squares Model[J]. IEEE Transaction on Image Processing, 2013,22(1):17-30
    [4]
    Pentland A P. A New Sense for Depth of Field[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1987, 9(4):523-531
    [5]
    Zhou Shaojie, Sim T. Defocus Map Estimation from a Single Image[J]. Pattern Recognition, 2011, 44(9):1852-1858
    [6]
    Tang Huiming, Hu Zheng, Zhi Chenjiao. Measure Method of Depth, Depth of Field and Object Size Based on Monocular Camera:CN201110007172.8[P]. 2012-11-21(唐慧明,胡铮,支晨蛟.基于单目摄像机的深度、深度场及物体大小的测量方法:CN201110007172.8[P]. 2012-11-21)
    [7]
    Li C M,Kao C,Gore J,et al. Implicit Active Contours Driven by Local Binary Fitting Energy[C]. IEEE Conference on Computer Vision and Pattern Recognition, Minnesota,USA,2007
    [8]
    Li C M,Kao C,Gore J,et al. Minimization of Region-Scalable Fitting Energy for Image Segmentation[J]. IEEE Transactions on Image Processing,2008,17(10):1940-1949
    [9]
    Li Aixia,Guan Zequn,Feng Tiantian. A Novel Method on Manifold for Multi-image Matching[J]. Geomatics and Information Science of Wuhan University, 2012, 37(11):1303-1306(李爱霞,关泽群,冯甜甜.一种利用流形学习进行多影像匹配的方法[J]. 武汉大学学报·信息科学版, 2012, 37(11):1303-1306)
    [10]
    He Peipei,Wan Youchuan, Gao Xianjun,et al. Street View Images Matching Algorithm Based on Color Scale-Invariant Feature Transform[J]. Geomatics and Information Science of Wuhan University, 2014, 39(7):867-872(何培培, 万幼川,高贤君,等.基于彩色信息尺度不变特征的街景影像匹配[J].武汉大学学报·信息科学版, 2014,39(7):867-872)
    [11]
    Du Bo, Zhang Liangpei, Li Pingxiang,et al. A Constrained Energy Minimization Method in Subpixel Target Detection Based on Minimization Noise Fraction[J]. Joural of Image and Graphic, 2009,14(9):1850-1857(杜博, 张良培, 李平湘, 等.基于最小噪声分离的约束能量最小化亚像元目标探测方法[J]. 中国图象图形学报, 2009,14(9):1850-1857)
    [12]
    Du Bo, Zhang Lefei, Li Lingxiang,et al. Discrimination Manifold Learning Approach for Hyperspectral Image Dimension Reduction[J]. Acta Photonica Sinica, 2013, 42(3):320-325(杜博, 张乐飞, 张良培, 等. 高光谱图像降维的判别流形学习方法[J]. 光子学报, 2013, 42(3):320-325)
    [13]
    Shi Q, Zhang L, Du B. Semisupervised Discriminative Locally Enhanced Alignment for Hyperspectral Image Classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(9):4800-4815
    [14]
    Gonzalez R C, Woods R E. Digital Image Processing(Third Edition)[M]. Beijing:Publishing House of Electronics Industry, 2011
    [15]
    Hu M K. Visual Pattern Recognition by Moment Invariants[J]. IRE Transactions on Information Theory, 1962, 8(2):179-182
    [16]
    Wang Yaoming. Moment Function on Images:Principles, Algorithms and Applications[M]. Shanghai:East China University of Science and Technology Press, 2002(王耀明.图像的矩函数:原理、算法及应用[M].上海:华东理工大学出版社,2002)
  • Related Articles

    [1]LI Qin, YOU Xiong, LI Ke, TANG Fen, WANG Weiqi. Image Matching Based on Local Object Matching[J]. Geomatics and Information Science of Wuhan University, 2022, 47(3): 419-427. DOI: 10.13203/j.whugis20190364
    [2]LU Xiao, ZHU Yiwei, YANG Muhua, ZHOU Xuanyu, WANG Yaonan. Reinforcement Learning Based End-to-End Autonomous Driving Decision-Making Method by Combining Image and Monocular Depth Features[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1862-1871. DOI: 10.13203/j.whugis20210409
    [3]ZOU Jing, CHEN Yonggang, GONG Jinqi, DONG Wanhu, SUN Yanfei, WANG Zhilin. An Efficient Matching Algorithm Based on Vector Graphics Using Multi-dimensional Object Segmentation Ratio[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1626-1632. DOI: 10.13203/j.whugis20190009
    [4]XU Yaming, SHI Juan, AN Dongdong, MA Xudong. Change Detection Based on Segmentation and Matched Features Points for UAV Images[J]. Geomatics and Information Science of Wuhan University, 2016, 41(10): 1286-1291. DOI: 10.13203/j.whugis20140873
    [5]ZHANG Chunsen, FAN Jinjian. Image Line Feature Relationship Matching with Object Structural Information[J]. Geomatics and Information Science of Wuhan University, 2012, 37(9): 1059-1063.
    [6]ZHAO Binbin, DENG Min, XU Zhen, LIU Huimin. Development of General Rules for Matching Multi-scale Area Objects[J]. Geomatics and Information Science of Wuhan University, 2011, 36(8): 991-994.
    [7]XIA Linyuan, XIAO Jun, LIN Liqun. Segment-based Stereo Matching Using Edge Dynamic Programming[J]. Geomatics and Information Science of Wuhan University, 2011, 36(7): 767-770.
    [8]ZHENG Shunyi, ZHANG Zuxun, ZHAI Ruifang. 3D Reconstruction of Complex Objects Based on Non-metric Image[J]. Geomatics and Information Science of Wuhan University, 2008, 33(5): 446-449.
    [9]LI Jiansong. Evolutions and Key Techniques for 3D Object Surface Vision-Measurement in Industry[J]. Geomatics and Information Science of Wuhan University, 2001, 26(4): 337-342.
    [10]Guo Renzhong. Spatial Object Classification and Spatial Object Construction[J]. Geomatics and Information Science of Wuhan University, 1994, 19(1): 22-28.

Catalog

    Article views (1305) PDF downloads (394) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return