LI Yuan, HU Han, XIE Jinhua, ZHU Qing, ZHANG Yeting, DU Zhiqiang, PENG Mingjun, GAO Shan. An Automatic Texture Mapping Method Using Local Surface Consistency Constraint[J]. Geomatics and Information Science of Wuhan University, 2016, 41(12): 1599-1604. DOI: 10.13203/j.whugis20140537
Citation: LI Yuan, HU Han, XIE Jinhua, ZHU Qing, ZHANG Yeting, DU Zhiqiang, PENG Mingjun, GAO Shan. An Automatic Texture Mapping Method Using Local Surface Consistency Constraint[J]. Geomatics and Information Science of Wuhan University, 2016, 41(12): 1599-1604. DOI: 10.13203/j.whugis20140537

An Automatic Texture Mapping Method Using Local Surface Consistency Constraint

Funds: 

The National Natural Science Foundation of China No. 41171311

National Science and Technology Support Program No. 2012BAH35B02

Sichuan Science and Technology Support Program No. 2014SZ0106

More Information
  • Author Bio:

    LI Yuan, postgraduate, specializes in the theories and methods of 3D reconstruction. E-mail: giser_liyuan@whu.edu.cn

  • Corresponding author:

    HU Han,PhD candidate. E-mail:huhan19880715@163.com

  • Received Date: October 27, 2014
  • Published Date: December 04, 2016
  • Due to the limitations of the accuracies in dense image matching and the factors of simplification during the three dimensional mesh generation, enormous noises normally occur on the triangular mesh surfaces during object reconstruction procedures. Furthermore, the geometrical and radiant differences between images, together with the noises, cause the textured mesh fragmentation. Aiming to solve this problem, this paper proposes a texture mapping method using a local surface consistency constraint. In this mapping procedure, fragmented triangles are merged into a relative larger surface with region growing, considering continuity and planarity. The regions are treated as a rigid surface and mapped to the same image to relieve the fragmented effect in the textured mesh. Experimental results show that the proposed method is effective and the output has better consistency than industry standard software such as street factory.
  • [1]
    朱庆, 徐冠宇, 杜志强, 等. 倾斜摄影测量技术综述[OL]. http://www.paper.edu.cn/releasepaper/content/201205-355,2012

    Zhu Qing, Xu Guanyu, Du Zhiqiang, et al. Review of Oblique Photogrammetric Technology[OL]. http://www.paper.edu.cn/releasepaper/content/201205-355,2012
    [2]
    王伟, 黄雯雯, 镇姣. Pictometry倾斜摄影技术及其在3维城市建模中的应用[J]. 测绘与空间地理信息, 2011, 34(3):181-183 http://www.cnki.com.cn/Article/CJFDTOTAL-DBCH201103061.htm

    Wang Wei, Huang Wenwen, Zhen Jiao. Pictometry Oblique Photography Technique and Its Application in 3D City Modeling[J]. Geomatics & Spatial Information Technology,2011,34(3):181-183 http://www.cnki.com.cn/Article/CJFDTOTAL-DBCH201103061.htm
    [3]
    Szeliski R. Video Mosaic for Virtual Environments[J]. IEEE Computer Graphics and Applications, 1996, 16(2):22-30 doi: 10.1109/38.486677
    [4]
    李治江, 张祖勋, 张剑清. 三维重建中真实纹理再现的一种有效方法[J]. 地理空间信息, 2004, 2(6):34-36 http://www.cnki.com.cn/Article/CJFDTOTAL-DXKJ200406011.htm

    Li Zhijiang, Zhang Zuxun, Zhang Jianqing. Effective Method on Realistic Texture Rendition in Three Dimension Reconstruction[J]. Geospatial Information, 2004,2(6):34-36 http://www.cnki.com.cn/Article/CJFDTOTAL-DXKJ200406011.htm
    [5]
    郭玲, 王建宇, 黄炎焱. 真实感3D重建中的纹理映射技术[J].中国图象图形学报, 2007, 12(10):1881-1884 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB200710046.htm

    Guo Ling, Wang Jianyu, Huang Yanyan. On Texture Mapping for Realistic 3D Reconstruction[J]. Journal of Image and Graphics, 2007,12(10):1881-1884 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB200710046.htm
    [6]
    Allène C, Pons J P, Keriven R.Seamless Image-Based Texture Atlases Using Multi-band Blending[C]. 19th International Conference on Pattern Recognition, Tampa, Florida, USA, 2008
    [7]
    Brown M, Lowe D G. Automatic Panoramic Image Stitching Using Invariant Features[J]. International Journal of Computer Vision, 2007,74(1):59-73 doi: 10.1007/s11263-006-0002-3
    [8]
    郑顺义, 周漾. 结构光系统结合数码相机的小物体高质量纹理重建[J]. 武汉大学学报·信息科学版, 2012, 37(5):529-534 http://ch.whu.edu.cn/CN/abstract/abstract195.shtml

    Zheng Shunyi, Zhou Yang. High Quality Texture Reconstruction for Small Objects Based on Structure Light Scanning System with Digital Camera[J]. Geomatics and Information Science of Wuhan University, 2012,37(5):529-534 http://ch.whu.edu.cn/CN/abstract/abstract195.shtml
    [9]
    周漾, 郑顺义, 黄荣永,等. 面泊松融合结合色彩变换的无缝纹理辐射处理[J]. 中国图象图形学报, 2014, 19(4):512-519 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB201404003.htm

    Zhou Yang, Zheng Shunyi, Huang Rongyong,et al. Face-wise Poisson Blending with Color Transfor in Seamless Texturing[J]. Journal of Image and Graphics,2014,19(4):512-519 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB201404003.htm
    [10]
    龚俊, 朱庆, 张叶廷,等. 顾及多细节层次的三维R树索引扩展方法[J]. 测绘学报, 2011, 40(2):249-255 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201102022.htm

    Gong Jun, Zhu Qing, Zhang Yeting, et al. An Efficient 3D R-tree Extension Method Concerned with Levels of Detail[J]. Acta Geodaetica et Cartographica Sinica,2011,40(2):249-255 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201102022.htm
    [11]
    Yen S H, Hsieh Y J. A KD-Tree-Based Nearest Neighbor Search for Large Quantities of Data[J]. Transactions on Internet and Information Systems, 2013, 7(3):459-470 doi: 10.3837/tiis.2013.03.003
    [12]
    Yuan Zhengwu, Wang Yuanhui. Research on K Nearest Neighbor Non-parametric Regression Algorithm Based on KD-Tree and Clustering Analysis[C]. 2012 Fourth International Conference on Computational and Information Sciences, Chongqing. China, 2012
    [13]
    Matei B C, Sawhney H S. Building Segmentation for Densely Built Urban Regions Using Aerial LiDAR Data[C]. 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, Alaska, USA, 2008

Catalog

    Article views (2265) PDF downloads (409) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return