LU Shiwei, FANG Zhixiang, SHAW Shihlung, ZHANG Xirui, YIN Ling. Quantitative Analysis of the Effects of Spatial Scales on Intra-urban Human Mobility[J]. Geomatics and Information Science of Wuhan University, 2016, 41(9): 1199-1204. DOI: 10.13203/j.whugis20140524
Citation: LU Shiwei, FANG Zhixiang, SHAW Shihlung, ZHANG Xirui, YIN Ling. Quantitative Analysis of the Effects of Spatial Scales on Intra-urban Human Mobility[J]. Geomatics and Information Science of Wuhan University, 2016, 41(9): 1199-1204. DOI: 10.13203/j.whugis20140524

Quantitative Analysis of the Effects of Spatial Scales on Intra-urban Human Mobility

Funds: 

The National Natural Science Foundation of China 41231171

The National Natural Science Foundation of China 41371420

State Key Laboratory of Resources and Environmental Information System Open Funding Program 201303

Shenzhen Dedicated Funding of Strategic Emerging Industry Development Program JCYJ20121019111128765

the Fundamental Research Foundation of Shenzhen City JCYJ20140610151856728

More Information
  • Corresponding author:

    FANG Zhixiang, PhD, professor. E-mail: zxfang@whu.edu.cn

  • Received Date: July 12, 2014
  • Published Date: September 04, 2016
  • Spatial grid units are usually used for investigate urban human mobility. These units can easily lead to a modifiable area unit problem (MAUP) stemming from size variations between grid units. Current research on urban human mobility does not consider the MAUP or its influence on the quantitative analysis of human mobility. To address this problem, we used massive mobile phone tacking data to conduct a quantitative analysis of the effects of modifiable areal unit problem when dividing the urban space into different size of grid cell sand determined that intra-grid movements increase approximately at a linear pattern, and inter-grid human mobility decreases with grid sizes in a linear pattern and thus grid cell size affects spatial decisions about urban human mobility. Different sized grids deliver inconsistent results when extracting important locations from a human mobility network. When combined with the land use data, the grid cells containing residential and industrial land use types are the most affected. This paper discusses possible means to mitigate the uncertainty problems.
  • [1]
    Jiang B, Yao X. Location-Based Services and GIS in Perspective[J]. Computers, Environment and Urban Systems, 2006, 30(6): 712-725 doi: 10.1016/j.compenvurbsys.2006.02.003
    [2]
    Song C,Koren T, Wang P, et al. Modelling the Scaling Properties of Human Mobility[J]. Nature Physics, 2010, 6(10): 818-823 doi: 10.1038/nphys1760
    [3]
    Kang C, Ma X, Tong D, et al. Intra-urban Human Mobility Patterns: An Urban Morphology Perspective[J]. Physica A: Statistical Mechanics and its Applications, 2012, 391(4): 1702-1717 doi: 10.1016/j.physa.2011.11.005
    [4]
    Jiang B, Yin J, Zhao S. Characterizing the Human Mobility Pattern in a Large Street Network[J]. Physical Review E, 2009, 80(2): 1711-1715 http://cn.bing.com/academic/profile?id=2021674713&encoded=0&v=paper_preview&mkt=zh-cn
    [5]
    Liu Y, Sui Z, Kang C, et al. Uncovering Patterns of Inter-urban Trip and Spatial Interaction from Social Media Check-in Data[J]. PloS One, 2014, 9(1): 26-36 http://cn.bing.com/academic/profile?id=2039350330&encoded=0&v=paper_preview&mkt=zh-cn
    [6]
    Scellato S, Noulas A, Mascolo C. Exploiting Place Features in Link Prediction on Location-Based Social Networks[C]. The 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, 2011
    [7]
    Sun L,Axhausen K W, Lee D H, et al. Understanding Metropolitan Patterns of Daily Encounters[J]. The National Academy of Sciences, 2013, 110(34): 13774-13779 doi: 10.1073/pnas.1306440110
    [8]
    Wesolowski A, Eagle N, Tatem A J, et al. Quantifying the Impact of Human Mobility on Malaria[J]. Science, 2012, 338(6104): 267-270 doi: 10.1126/science.1223467
    [9]
    Toole J L, Ulm M, González M C, et al. InferringLand Use from Mobile Phone Activity[C]. The ACM SIGKDD International Workshop on Urban Computing, Beijing, China, 2012
    [10]
    Calabrese F, Colonna M,Lovisolo P, et al. Real-Time Urban Monitoring Using Cell Phones: A Case Study in Rome[J]. Intelligent Transportation Systems, IEEE Transactions on, 2011, 12(1): 141-151 doi: 10.1109/TITS.2010.2074196
    [11]
    Loibl W, Peters-Anders J. Mobile Phone Data as Source to Discover Spatial Activity and Motion Patterns[M]. Berlin & Offenbach: Wichmann Verlag, 2012
    [12]
    Giannotti F,Nanni M, Pedreschi D, et al. Unveiling the Complexity of Human Mobility by Querying and Mining Massive Trajectory Data[J]. The International Journal on Very Large Data Bases, 2011, 20(5): 695-719 doi: 10.1007/s00778-011-0244-8
    [13]
    Phithakkitnukoon S, Horanont T, Di Lorenzo G, et al. Activity-Aware Map: Identifying Human Daily Activity Pattern Using Mobile Phone Data[M]. Berlin, Heidelberg: Springer ,2010
    [14]
    Reades J, Calabrese F, Ratti C. Eigenplaces: Analysing Cities Using the Space-Time Structure of the Mobile Phone Network[J]. Environment and Planning B: Planning and Design, 2009, 36(5): 824-836 doi: 10.1068/b34133t
    [15]
    Wu L,Zhi Y, Sui Z, et al. Intra-Urban Human Mobility and Activity Transition: Evidence from Social Media Check-In Data[J]. PloS One, 2014, 9(5): 10-18 http://cn.bing.com/academic/profile?id=2095571984&encoded=0&v=paper_preview&mkt=zh-cn
    [16]
    Yue Y, Wang H D, Hu B, et al. Exploratory Calibration of a Spatial Interaction Model Using Taxi GPS Trajectories[J]. Computers, Environment and Urban Systems, 2012, 36(2): 140-153 doi: 10.1016/j.compenvurbsys.2011.09.002
    [17]
    Silva E A. Effects of theModifiable Areal Unit Problem on the Delineation of Traffic Analysis Zones[J]. Environment and Planning B: Planning and Design, 2009, 36: 625-643 doi: 10.1068/b34033
    [18]
    Openshaw S. The Modifiable Areal Unit Problem [M]. Norwich: Geo Books, 1983
    [19]
    萧世伦, 方志祥. 从时空GIS视野来定量分析人类行为的思考[J]. 武汉大学学报·信息科学版, 2014, 39(6): 667-670 http://ch.whu.edu.cn/CN/abstract/abstract3012.shtml

    Shaw Shihlung, Fang Zhixiang. RethinkingHuman Behavior Research from the Perspective of Space-Time GIS[J]. Geomatics and Information Science of Wuhan University, 2014, 39(6): 667-670 http://ch.whu.edu.cn/CN/abstract/abstract3012.shtml
    [20]
    Brin S, Page L. The Anatomy of a Large-Scale Hypertextual Web Search Engine[J]. Computer Networks and ISDN Systems, 1998, 30(1): 107-117 http://cn.bing.com/academic/profile?id=272002958&encoded=0&v=paper_preview&mkt=zh-cn
    [21]
    Simini F, González M C, Maritan A, et al. A Universal Model for Mobility and Migration Patterns[J]. Nature, 2012, 484(7392): 96-100 doi: 10.1038/nature10856
    [22]
    Zipf G K. The P1 P2/D Hypothesis: On the Intercity Movement of Persons[J]. American Sociological Review, 1946, 11(6): 677-686 doi: 10.2307/2087063
    [23]
    李德仁, 彭明军. 城市空间信息规则网格与不规则网格的数据转换[J]. 武汉大学学报·信息科学版, 2007, 32(2): 95-99 http://ch.whu.edu.cn/CN/abstract/abstract1833.shtml

    Li Deren, Peng Mingjun. Transformation Between Urban Spatial Information Irregular Grid and Regular Grid[J]. Geomatics and Information Science of Wuhan University, 2007, 32(2): 95-99 http://ch.whu.edu.cn/CN/abstract/abstract1833.shtml

Catalog

    Article views (1709) PDF downloads (501) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return