SUI Haigang, CHEN Guang, HU Chuanwen, SONG Zhina. Integrated Segmentation, Registration and Extraction Method for Water-Body Using Optical Remote Sensing Images and GIS Data[J]. Geomatics and Information Science of Wuhan University, 2016, 41(9): 1145-1150. DOI: 10.13203/j.whugis20140460
Citation: SUI Haigang, CHEN Guang, HU Chuanwen, SONG Zhina. Integrated Segmentation, Registration and Extraction Method for Water-Body Using Optical Remote Sensing Images and GIS Data[J]. Geomatics and Information Science of Wuhan University, 2016, 41(9): 1145-1150. DOI: 10.13203/j.whugis20140460

Integrated Segmentation, Registration and Extraction Method for Water-Body Using Optical Remote Sensing Images and GIS Data

Funds: 

The National 973 Program of China 2012CB719906

the National 863 Program of China 2013AA122301

More Information
  • Author Bio:

    SUI Haigang, PhD, professor, specializes in remote sensing image processing and information extraction, 3D GIS theory and application, integration and application of multi sensors information. E-mail: haigang_sui@263.net

  • Received Date: April 12, 2015
  • Published Date: September 04, 2016
  • Automatic water-body extraction from remote sensing images is a challenging problem. In this paper, a novel automatic water-body extraction technique is proposed for optical visible remote sensing images. It integrates image segmentation, image registration and change detection with GIS data as a whole process. A new iterative segmentation and registration strategy is also proposed. A multi-scale visual attention model is introduced to detect salient areas and a level-set segmentation algorithm is employed for image segmentation. An improved shape curve similarity (ISCS) method is presented to constrain the matching of image segmentation objects and GIS-identified water-bodies. Furthermore, a buffer-based change detection algorithm was designed to obtain unchanged water-bodies and non-water objects were eliminated with the aid of GIS data and spectral features. Experiments were carried out on three sets of data.Results show that the proposed method was effective in rapid water body extraction and change detection.
  • [1]
    Tralli D M, Blom R G, Zlotnicki V, et al. Satellite Remote Sensing of Earthquake, Volcano, Flood, Landslide and Coastal Inundation Hazards[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2005, 59(4): 185-198 doi: 10.1016/j.isprsjprs.2005.02.002
    [2]
    杨树文, 李轶鲲, 刘涛, 等.基于SPOT5影像自动提取水体的新方法[J].武汉大学学报·信息科学版, 2015, 40(3): 308-314 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201503004.htm

    Yang Shuwen, Li Yikun, Liu Tao, et al. A New Automatic Water Body Feature Extraction Method Based on SPOT5 Images[J]. Geomatics and Information Science of Wuhan University, 2015, 40(3): 308-314 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201503004.htm
    [3]
    Mcfeeters S K. The Use of The Normalized Difference Water Index (NDWI) in The Delineation of Open Water Features[J]. International Journal of Remote Sensing, 1996, 17(7): 1 425-1 432 doi: 10.1080/01431169608948714
    [4]
    Xu H. Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery[J]. International Journal of Remote Sensing, 2006, 27(14): 3 025-3 033 doi: 10.1080/01431160600589179
    [5]
    Subramaniam S, Suresh Babu A V, Roy P S. Automated Water Spread Mapping Using ResourceSat-1 AWiFS Data for Water Bodies Information System[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2011, 4(1): 205-215 doi: 10.1109/JSTARS.2010.2085032
    [6]
    徐川, 华凤, 眭海刚, 等.多尺度水平集SAR影像水体自动分割方法[J].武汉大学学报·信息科学版, 2014, 39(1): 27-31 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201401006.htm

    Xu Chuan, Hua Feng, Sui Haigang, et al. Automatic Water Segmentation Method in SAR Images Using Multi-scale Level Set[J]. Geomatics and Information Science of Wuhan University, 2014, 39(1): 27-31 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201401006.htm
    [7]
    Liu J, Currit N, Meng X. Extraction of Water Bodies from Remotely Sensed Images[C]. International Symposium on Intelligent Signal Processing and Communication Systems, Chengdu, China, 2010
    [8]
    Kartikeyan B, Sarkar A, Majumder K L. A Segmentation Approach to Classification of Remote Sensing Imagery[J]. International Journal of Remote Sensing. 1998, 19(9): 1 695-1 709 doi: 10.1080/014311698215199
    [9]
    Mendoza M E, Bocco G, Bravo M, et al. Predicting Water-Surface Fluctuation of Continental Lakes: A RS and GIS Based Approach in Central Mexico[J]. Water Resources Management, 2006, 20(2): 291-311 doi: 10.1007/s11269-006-8199-z
    [10]
    安晓亚, 孙群, 杨云, 等.一种利用主动轮廓模型和矢量数据的遥感影像面状水体提取方法[J].武汉大学学报·信息科学版, 2013, 38(10): 1 152-1 157 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201310005.htm

    An Xiaoya, Sun Qun, Yang Yun, et al. A Method for Extracting Area Water Body from Remote Sensing Images Using Active Contour Model and Vector Data[J]. Geomatics and Information Science of Wuhan University, 2013, 38(10): 1 152-1 157 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201310005.htm
    [11]
    Otsu N. A Threshold Selection Method from Gray-Level Histograms[J]. IEEE Transactions on Systems, Man and Cybernetics, 1979, 9(1): 62-66 doi: 10.1109/TSMC.1979.4310076
    [12]
    Itti L, Koch C, Niebur E. A Model of Saliency-Based Visual Attention for Rapid Scene Analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1998, 20(11): 1 254-1 259 doi: 10.1109/34.730558
    [13]
    Chan T F, Vese L A. Active Contours without Edges[J]. IEEE Transactions on Image Processing. 2001, 10(2): 266-277 doi: 10.1109/83.902291
    [14]
    Hu M. Visual Pattern Recognition by Moment Invariants[J]. IRE Transactions on Information Theory, 1962, 8(2): 179-187 doi: 10.1109/TIT.1962.1057692
    [15]
    Ester M, Kriegel H, S J, et al. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[C]. Knowledge Discovery and Data Mining, Portland, Oregon, USA, 1996
  • Related Articles

    [1]SUN Yue, WANG Hongqi, LI Feng, WANG Ning. Elastic Registration of Remote Sensing Images for Change Detection[J]. Geomatics and Information Science of Wuhan University, 2018, 43(1): 53-59. DOI: 10.13203/j.whugis20150510
    [2]LI Liang, SHU Ning, GONG Yan. Remote Sensing Image Change Detection and Change Type Recognition Based on Spatiotemporal Relationship[J]. Geomatics and Information Science of Wuhan University, 2013, 38(5): 533-537.
    [3]YOU Hongjian. SAR Change Detection by Multi-scale Segmentation and Optimization[J]. Geomatics and Information Science of Wuhan University, 2011, 36(5): 531-534.
    [4]YUAN Xiuxiao, SONG Yan. Image Preprocessing Method Based on Edge Feature Matching for Change Detection in Multi-temporal Remotely Sensed Imageries[J]. Geomatics and Information Science of Wuhan University, 2007, 32(5): 381-384.
    [5]YUAN Xiuxiao, JI Shunping. Change Detection Using Aerial Images with POS Data[J]. Geomatics and Information Science of Wuhan University, 2007, 32(4): 283-286.
    [6]XU Lihua, JIANG Wanshou. Change Detection of Satellite Imagery Considering Projection Difference[J]. Geomatics and Information Science of Wuhan University, 2006, 31(8): 687-690.
    [7]ZHANG Xiaodong, LI Deren, GONG Jianya, QIN Qianqing. A Change Detection Method of Integrating Remote Sensing and GIS[J]. Geomatics and Information Science of Wuhan University, 2006, 31(3): 266-269.
    [8]SU Guozhong, ZHANG Jianqing, CHEN Binggui. GIS Knowledge Guided Change Detection and Update of Digital Orthoimage[J]. Geomatics and Information Science of Wuhan University, 2005, 30(8): 664-667.
    [9]LI Deren. Change Detection from Remote Sensing Images[J]. Geomatics and Information Science of Wuhan University, 2003, 28(S1): 7-12.
    [10]Fang Zhen, Zhang Jianqing, Zhang Zuxun. Change Detection Based on Aerial Image of Urban Area[J]. Geomatics and Information Science of Wuhan University, 1997, 22(3): 240-244.
  • Cited by

    Periodical cited type(3)

    1. 朱广彬,常晓涛,瞿庆亮,周苗. 利用卫星引力梯度确定地球重力场的张量不变方法研究. 武汉大学学报(信息科学版). 2022(03): 334-340 .
    2. 刘焕玲,文汉江,徐新禹,赵永奇,蔡剑青. GOCE实测数据反演高阶重力场模型的Torus方法. 测绘学报. 2020(08): 965-973 .
    3. 景小阳,裴婧,许航,解文博. 使用Savitzky—Golay滤波器改进的位场ISVD算法. 工程地球物理学报. 2019(04): 486-493 .

    Other cited types(3)

Catalog

    Article views (1877) PDF downloads (504) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return