WANG Leyang, WU Fei, WU Liangcai. Total Least Squares Fitting Estimation Model for GPS Height Transformation[J]. Geomatics and Information Science of Wuhan University, 2016, 41(9): 1259-1264. DOI: 10.13203/j.whugis20140421
Citation: WANG Leyang, WU Fei, WU Liangcai. Total Least Squares Fitting Estimation Model for GPS Height Transformation[J]. Geomatics and Information Science of Wuhan University, 2016, 41(9): 1259-1264. DOI: 10.13203/j.whugis20140421

Total Least Squares Fitting Estimation Model for GPS Height Transformation

Funds: 

The National Natural Science Foundation of China 41204003

Science and Technology Project of the Education Department of Jiangxi Province GJJ150595

Science and Technology Project of the Education Department of Jiangxi Province KJLD12077

Science and Technology Project of the Education Department of Jiangxi Province KJLD14049

Key Laboratory of Watershed Ecology and Geographical Environment Monitoring, NASG WE2015005

Key Laboratory of Mapping from Space, NASG K201502

National Department Public Benefit Research Foundation (Surveying, Mapping and Geoinformation) 201512026

Scientific Research Foundation of ECIT DHBK201113

Support Program for Outstanding Youth Talents in Jiangxi Province 

National Key Research and Development Program 2016YFB0501405

More Information
  • Author Bio:

    WANG Leyang, PhD, associate professor, specializes in geodetic inversion and geodetic data processing.wleyang@163.com

  • Received Date: September 08, 2014
  • Published Date: September 04, 2016
  • In the current research on the total least squares method in the conversion of GPS height, the calculation of the conversion parameter and elevation abnormities of the check points are generally performed in two steps, and only consider the error in the coefficient matrix used to calculate the parameters; errors in the coordinate of the check point are ignored. In view of this gap, we put forward a total least squares fitting estimation model of GPS height transformation, that combines the calculation of fitting parameters with the calculation of elevation abnormities at inspection points, and considers the position error of all points. Collocation calculation experiemental results verify the feasibility of this method. These test results show that the method can effectively improve the accuracy of elevation conversion.
  • [1]
    徐绍铨, 张华海, 杨志强, 等.GPS测量原理及应用[M].武汉:武汉大学出版社, 2008

    Xu Shaoquan, Zhang Huahai, Yang Zhiqiang, et al. GPS Measurement Principle and Application[M]. Wuhan: Wuhan University Press, 2008
    [2]
    王乐洋, 许才军.总体最小二乘研究进展[J].武汉大学学报·信息科学版, 2013, 38(7): 850-856 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201307022.htm

    Wang Leyang, Xu Caijun. Progress in Total Least Square[J]. Geomatics and Information Science of Wuhan University, 2013, 38(7): 850-856 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201307022.htm
    [3]
    丁海勇, 孙景领.GPS高程转换的总体最小二乘方法研究[J].大地测量与地球动力学, 2013, 33(3):52-55 http://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201303011.htm

    Ding Haiyong, Sun Jingling. Research on Total Least-Squares Methods for Transformation of GPS Elevation[J]. Journal of Geodesy and Geodynamics, 2013, 33(3): 52-55 http://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201303011.htm
    [4]
    赵辉, 张书毕, 张秋昭.基于加权总体最小二乘法的GPS高程拟合[J].大地测量与地球动力学, 2011, 31(5): 88-90 http://www.cnki.com.cn/article/cjfdtotal-dkxb201105018.htm

    Zhao Hui, Zhang Shubi, Zhang Qiuzhao. GPS Height Fitting of Weighted Total Least-Squares Adjustment[J]. Journal of Geodesy and Geodynamics, 2011, 31(5):88-90 http://www.cnki.com.cn/article/cjfdtotal-dkxb201105018.htm
    [5]
    龚循强, 陈磬, 周秀芳.总体最小二乘平差方法在GPS高程拟合中的应用研究[J].测绘通报, 2014(3): 6-8 http://www.cnki.com.cn/Article/CJFDTOTAL-CHTB201403002.htm

    Gong Xunqiang, Chen Qing, Zhou Xiufang. The Application Research of GPS Height Fitting Based on TLS Adjustment Method[J]. Bulletin of Surveying and Mapping, 2014(3): 6-8 http://www.cnki.com.cn/Article/CJFDTOTAL-CHTB201403002.htm
    [6]
    Tao Y Q, Gao J X, Yao Y F. TLS Algorithm for GPS Height Fitting Based on Robust Estimation[J]. Survey Review, 2014, 46(336):184-188 doi: 10.1179/1752270613Y.0000000083
    [7]
    李博峰, 沈云中, 李薇晓.无缝三维基准转换模型[J].中国科学(地球科学), 2012, 42(7): 1 047-1 054 http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201207012.htm

    Li Bofeng, Shen Yunzhong, Li Weixiao. The Seamless Model for Three-Dimensional Datum Transformation[J]. Sci China Earth Sci, 2012, 42(7): 1 047-1 054 http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201207012.htm
    [8]
    Mahboub V. On Weighted Total Least-Squares for Geodetic Transformations[J]. Journal of Geodesy, 2012, 86(5): 359-367 doi: 10.1007/s00190-011-0524-5
    [9]
    鲁铁定, 宁津生.总体最小二乘平差理论及其应用[M].北京:中国科学技术出版社, 2011

    Lu Tieding, Ning Jinsheng. Total Least Squares Adjustment Theory and Its Applications[M]. Beijing: China Science and Technology Press, 2011
    [10]
    王乐洋.测边网坐标的总体最小二乘平差方法[J].大地测量与地球动力学, 2012, 32(6): 81-85 http://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201206018.htm

    Wang Leyang. Trilateration Net's Coordinate Adjustment Based on Total Least Squares[J]. Journal of Geodesy and Geodynamics, 2012, 32(6): 81-85 http://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201206018.htm
    [11]
    孔建, 姚宜斌, 吴寒.整体最小二乘的迭代解法[J].武汉大学学报·信息科学版, 2010, 35(6): 711-714 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201006024.htm

    Kong Jian, Yao Yibin, Wu Han. Iterative Method for Total Least-Squares[J]. Geomatics and Information Science of Wuhan University, 2010, 35(6): 711-714 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201006024.htm
    [12]
    陶本藻, 邱卫宁, 姚宜斌.误差理论与测量平差基础[M].武汉:武汉大学出版社, 2009

    Tao Benzao, Qiu Weining, Yao Yibin. Error Theory and Fundation of Surveying Adjustment[M].Wuhan: Wuhan University Press, 2009
    [13]
    李丽华, 高井祥, 刘晋斌.协方差函数拟合高程异常方法探析[J].测绘工程, 2005, 14(4):33-35 http://www.cnki.com.cn/Article/CJFDTOTAL-CHGC200504009.htm

    Li Lihua, Gao Jingxiang, Liu Jinbin. Discussion of the Methods of the Covariance Function Prediction for the Fitting of Abnormal Height[J]. Engineering of Surveying and Mapping, 2005, 14(4):33-35 http://www.cnki.com.cn/Article/CJFDTOTAL-CHGC200504009.htm
    [14]
    王增利, 黄腾, 邓标.基于二次曲面的拟合推估法在GPS高程测量中的应用[J].测绘工程, 2009, 18(1):50-52 http://www.cnki.com.cn/Article/CJFDTOTAL-CHGC200901016.htm

    Wang Zengli, Huang Teng, Deng Biao. Application of Collocation Model Based on Quadric Surface in GPS Leveling Surveying[J]. Engineering of Surveying and Mapping, 2009, 18(1):50-52 http://www.cnki.com.cn/Article/CJFDTOTAL-CHGC200901016.htm
    [15]
    Teunissen P J G, Simons D, Tiberius C. Probability and Observation Theory[M]. The Netherlands: Delft University of Technology, 2008
  • Cited by

    Periodical cited type(22)

    1. 刘英,吴清海,王仁,王锦洋,王皓,张鑫雨. GPS高程拟合模型方法的研究与分析. 测绘与空间地理信息. 2024(01): 74-76+80 .
    2. 邱德超. 一种基于PEIV模型的GNSS高程拟合解法. 北京测绘. 2024(10): 1504-1507 .
    3. 张鹏海. GNSS高程拟合技术在海外铁路勘测中的应用. 铁道勘察. 2023(04): 48-52+58 .
    4. 汪进新,白光钊. 基于EMD的改进型3δ粗差探测方法. 北京测绘. 2023(11): 1462-1467 .
    5. 薛树强,杨文龙,李保金. 反距离加权插值函数性质及最优插值条件. 测绘科学. 2022(10): 1-7+65 .
    6. 董洲洋,徐卫明,庄昊,孟浩. 基于深度学习的GPS水准拟合方法. 测绘科学. 2021(04): 57-62 .
    7. 岳春芳,宋金元. RBF神经网络组合模型在GPS高程拟合中的应用. 测绘地理信息. 2020(01): 20-22 .
    8. 王建忠,王玉龙,李睿智. 河北CORS和EGM2008模型在RTK三维水深测量中的应用. 北京测绘. 2020(05): 671-674 .
    9. 李明. 多项式曲面GPS高程拟合优化算法在山区公路勘测中的应用. 低碳世界. 2020(09): 123-125 .
    10. 杜寒露,陶叶青,蔡安宁,周露. 一种病态EIV模型正则化的修正算法. 测绘科学. 2019(08): 32-36 .
    11. 崔家武,张兴福,周波阳,杜向锋,魏德宏. 改进的GNSS/水准点优化选择的逐步剔除法. 武汉大学学报(信息科学版). 2019(10): 1505-1510 .
    12. 白驹,李委员,李松泽,郭英起. 基于正交矩阵高程拟合法卫星控制网高程拟合的研究. 齐齐哈尔大学学报(自然科学版). 2019(06): 49-52 .
    13. Min Yu,Feng Xue,Chao Ruan,Hang Guo. Floor positioning method indoors with smartphone's barometer. Geo-Spatial Information Science. 2019(02): 138-148 .
    14. 张海燕,李秀海,韩冰. 基于三次样条函数的长线路GNSS高程拟合研究. 测绘工程. 2018(07): 15-17+23 .
    15. 王乐洋,熊露雲. 一种Partial EIV半参数模型的系统误差处理方法. 测绘学报. 2018(01): 25-34 .
    16. 袁士涛. 基于EGM2008的分区拟合在铁路高程中的应用研究. 工程地球物理学报. 2018(01): 112-116 .
    17. 徐磊,常国宾,汪云甲,骆飞,陈雄川. 应用赤池信息量准则优选多项式高程拟合模型. 合肥工业大学学报(自然科学版). 2018(08): 1074-1078 .
    18. 孙坚强,王乐洋,吴璐璐. GPS高程转换联合模型的方差分量估计. 江西科学. 2018(04): 658-661+671 .
    19. 余腾,胡伍生,吴杰,孙小荣,赵升峰. 铁道工程中两种常用GNSS高程拟合方法的比较研究. 铁道勘察. 2018(04): 44-49 .
    20. 陈凯. 一种新的GPS高程拟合方法及其在京哈高速公路测量中的应用. 公路工程. 2018(03): 106-109+130 .
    21. 陶武勇,花向红,冯绍权. 多元总体最小二乘方差分量估计. 测绘通报. 2018(S1): 179-183 .
    22. 王乐洋,温贵森. 一种基于Partial EIV模型的多项式拟合解法. 大地测量与地球动力学. 2017(07): 737-742 .

    Other cited types(9)

Catalog

    Article views (1644) PDF downloads (431) Cited by(31)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return