Citation: | ZHANG Han, NI Weiping, YAN Weidong, BIAN Hui, WU Junzheng, LI Sha, JIN Xiao. Mid and Low Resolution SAR Image Change Detection Based on Fractal and Multi-scale Analysis[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 642-648. DOI: 10.13203/j.whugis20140375 |
[1] |
Li Deren. Change Detection from Remote Sensing Images[J]. Geomatics and Information Science of Wuhan University, 2008, 28(s1):7-12(李德仁. 利用遥感影像进行变化检测[J]. 武汉大学学报·信息科学版, 2003, 28(s1):7-12)
|
[2] |
Gong M G, Su L Z, Jia M,et al. Fuzzy Clustering with Modified MRF Energy Function for Change Detection in Synthetic Aperture Radar Images[J]. IEEE Transactions on Fuzzy Systems,2013, 99:1-12
|
[3] |
Inglada J, Mercier G. A New Statistical Similarity Measure for Change Detection in Multitemporal SAR Images and Its Extension to Multiscale Change Analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(5):1432-1445
|
[4] |
Huang S Q, Cai X H, Chen S X,et al. Change Detection Method Based on Fractal Model and Wavelet Transform for Multi Temporal SAR Images[J]. International Journal of Applied Earth Observation and Geoinformation, 2011, 13(1):863-872
|
[5] |
Salmasi M, Hashemi M M. Design and Analysis of Fractal Detector for High Resolution Radars[J]. Chaos, Solitons, and Fractals, 2009, 40(1):2133-2145
|
[6] |
Celik T. A Bayesian Approach to Unsupervised Multiscale Change Detection in Synthetic Aperture Radar Images[J]. Signal Processing, 2010, 90:1471-1485
|
[7] |
Xin F F, Jiao L C, Wang G T. SAR Image Change Detection Based on Memetic Algorithm[J]. J Infrared Millim Waves,2012,31(1):67-72(辛芳芳, 焦李成, 王桂婷. 基于Memetic算法的SAR图像变化检测[J]. 红外与毫米波学报, 2012, 31(1):67-72)
|
[8] |
Bovolo F, Bruzzone L. A Detail-Preserving Scale-Driven Approach to Change Detection in Multitemporal SAR Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(12):2963-2972
|
[9] |
Gong Maoguo, Zhou Zhiqiang, Ma Jingjing. Change Detection in Synthetic Aperture Radar Images Based on Image Fusion and Fuzzy Clustering[J]. IEEE Transactions on Image Processing, 2012, 21(4):2141-2151
|
[10] |
Chaudhuri B, Sarkar N. TextureSegmentation Using Fractal Dimension[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence Geoscience and Remote Sensing, 1995, 17(1):72-77
|
[11] |
Ivanovici M, Richard N. Fractal Dimension of Color Fractal Images[J]. IEEE Transactions on Image Processing, 2011, 20(1):227-235
|
[12] |
Pentland A P. Fractal-Based Description of Natural Scenes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence Geoscience and Remote Sensing, 1984, 6(6):661-674
|
[13] |
Koenderink J J. The Structure of Images[J]. Biological Cybernetics, 1984, 50:363-370
|
[1] | DENG Bo, ZHANG Hui, BAI Jun, DONG Xiujun, JIN Dianqi, JIN Songyan, ZHANG Shaobiao. Hazard Evaluation of the Slope Based on Airborne LiDAR Data in Shenzhen, China[J]. Geomatics and Information Science of Wuhan University, 2024, 49(8): 1377-1391. DOI: 10.13203/j.whugis20220141 |
[2] | XU Caijun, HE Kefeng. Advancements in Earthquake Cycle Deformation Research Based on Geodetic Observations[J]. Geomatics and Information Science of Wuhan University, 2023, 48(11): 1736-1755. DOI: 10.13203/j.whugis20230304 |
[3] | XU Caijun, XIONG Wei, LIU Chuanjin. Progress in Studying of 3D Crustal Deformation and Seismic Risk Assessment of the Tibetan Plateau Using Geodetic Observations[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 997-1009. DOI: 10.13203/j.whugis20230126 |
[4] | XU Caijun, WANG Xiaohang, WEN Yangmao, LI Wei. Progress and Prospects of Seismic Geodetic Determination of Asperities[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10): 1701-1712. DOI: 10.13203/j.whugis20220446 |
[5] | WANG Jiapei, ZHANG Xinlin, ZHANG Yi, LI Zhongya, HU Minzhang, SHEN Chongyang. Analysis of Gravity Variation and Vertical Crustal Deformation at Wuhan Jiufeng Seismic Station[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 964-971. DOI: 10.13203/j.whugis20220157 |
[6] | JIANG Ying, LIU Ziwei, ZHANG Xiaotong, ZHANG Lina, WEI Jin. Variation Features of b-Value Before and After the 2021 Maduo Mw 7.4 Earthquake[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 907-915. DOI: 10.13203/j.whugis20220071 |
[7] | LI Chong, LI Jiancheng, HUANG Ruijin, TAN Li. Discussion of Crustal Flow Beneath the Eastern Tibetan Plateau and Mechanism of the Wenchuan Earthquake[J]. Geomatics and Information Science of Wuhan University, 2015, 40(6): 810-815. DOI: 10.13203/j.whugis20130655 |
[8] | Yin Myo Min Htwe, SHEN Wenbin, SUN Rong. Seismic Hazard Assessment in Yangon(Burma) and Its Surrounding Areas[J]. Geomatics and Information Science of Wuhan University, 2010, 35(4): 463-466. |
[9] | GU Guohua, WANG Wuxing, MENG Guojie, XU Yueren. Crustal Movements Before and After the Wenchuan Earthquake as Detected by GPS Observations[J]. Geomatics and Information Science of Wuhan University, 2009, 34(11): 1336-1339. |
[10] | WU Yun, SUN Jianzhong, QIAO Xuejun, WANG Hui. Applications of GPS to Current Crust Movements and Monitoring Seismic Precursors[J]. Geomatics and Information Science of Wuhan University, 2003, 28(S1): 79-82,136. |