ZHANG Han, NI Weiping, YAN Weidong, BIAN Hui, WU Junzheng, LI Sha, JIN Xiao. Mid and Low Resolution SAR Image Change Detection Based on Fractal and Multi-scale Analysis[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 642-648. DOI: 10.13203/j.whugis20140375
Citation: ZHANG Han, NI Weiping, YAN Weidong, BIAN Hui, WU Junzheng, LI Sha, JIN Xiao. Mid and Low Resolution SAR Image Change Detection Based on Fractal and Multi-scale Analysis[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 642-648. DOI: 10.13203/j.whugis20140375

Mid and Low Resolution SAR Image Change Detection Based on Fractal and Multi-scale Analysis

More Information
  • Received Date: September 14, 2014
  • Published Date: May 04, 2016
  • For pixel based SAR image change detection, the discrepancy images produced by the log ratio operation or Kullback-Leibler divergence cannot achieve satisfactory results in artificial target change detection. We introduce a fractal dimension into the construction of discrepancy images and define the Fractal Dimension-Log Ratio (FD-LR) image capable of detecting changes both from the natural targets and the artificial targets. A Gaussian mixture distribution is used to model the statistical properties of FD-LR. The Bayesian principle with expectation maximization-based parameter estimation is conducted to perform unsupervised thresholding on the FD-LR. To reduce speckle interferences , multiscale analysis and data fusion in the decision step are performed. Comparative experiments confirm the effectiveness of the proposed approach.
  • [1]
    Li Deren. Change Detection from Remote Sensing Images[J]. Geomatics and Information Science of Wuhan University, 2008, 28(s1):7-12(李德仁. 利用遥感影像进行变化检测[J]. 武汉大学学报·信息科学版, 2003, 28(s1):7-12)
    [2]
    Gong M G, Su L Z, Jia M,et al. Fuzzy Clustering with Modified MRF Energy Function for Change Detection in Synthetic Aperture Radar Images[J]. IEEE Transactions on Fuzzy Systems,2013, 99:1-12
    [3]
    Inglada J, Mercier G. A New Statistical Similarity Measure for Change Detection in Multitemporal SAR Images and Its Extension to Multiscale Change Analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(5):1432-1445
    [4]
    Huang S Q, Cai X H, Chen S X,et al. Change Detection Method Based on Fractal Model and Wavelet Transform for Multi Temporal SAR Images[J]. International Journal of Applied Earth Observation and Geoinformation, 2011, 13(1):863-872
    [5]
    Salmasi M, Hashemi M M. Design and Analysis of Fractal Detector for High Resolution Radars[J]. Chaos, Solitons, and Fractals, 2009, 40(1):2133-2145
    [6]
    Celik T. A Bayesian Approach to Unsupervised Multiscale Change Detection in Synthetic Aperture Radar Images[J]. Signal Processing, 2010, 90:1471-1485
    [7]
    Xin F F, Jiao L C, Wang G T. SAR Image Change Detection Based on Memetic Algorithm[J]. J Infrared Millim Waves,2012,31(1):67-72(辛芳芳, 焦李成, 王桂婷. 基于Memetic算法的SAR图像变化检测[J]. 红外与毫米波学报, 2012, 31(1):67-72)
    [8]
    Bovolo F, Bruzzone L. A Detail-Preserving Scale-Driven Approach to Change Detection in Multitemporal SAR Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(12):2963-2972
    [9]
    Gong Maoguo, Zhou Zhiqiang, Ma Jingjing. Change Detection in Synthetic Aperture Radar Images Based on Image Fusion and Fuzzy Clustering[J]. IEEE Transactions on Image Processing, 2012, 21(4):2141-2151
    [10]
    Chaudhuri B, Sarkar N. TextureSegmentation Using Fractal Dimension[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence Geoscience and Remote Sensing, 1995, 17(1):72-77
    [11]
    Ivanovici M, Richard N. Fractal Dimension of Color Fractal Images[J]. IEEE Transactions on Image Processing, 2011, 20(1):227-235
    [12]
    Pentland A P. Fractal-Based Description of Natural Scenes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence Geoscience and Remote Sensing, 1984, 6(6):661-674
    [13]
    Koenderink J J. The Structure of Images[J]. Biological Cybernetics, 1984, 50:363-370
  • Related Articles

    [1]DENG Bo, ZHANG Hui, BAI Jun, DONG Xiujun, JIN Dianqi, JIN Songyan, ZHANG Shaobiao. Hazard Evaluation of the Slope Based on Airborne LiDAR Data in Shenzhen, China[J]. Geomatics and Information Science of Wuhan University, 2024, 49(8): 1377-1391. DOI: 10.13203/j.whugis20220141
    [2]XU Caijun, HE Kefeng. Advancements in Earthquake Cycle Deformation Research Based on Geodetic Observations[J]. Geomatics and Information Science of Wuhan University, 2023, 48(11): 1736-1755. DOI: 10.13203/j.whugis20230304
    [3]XU Caijun, XIONG Wei, LIU Chuanjin. Progress in Studying of 3D Crustal Deformation and Seismic Risk Assessment of the Tibetan Plateau Using Geodetic Observations[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 997-1009. DOI: 10.13203/j.whugis20230126
    [4]XU Caijun, WANG Xiaohang, WEN Yangmao, LI Wei. Progress and Prospects of Seismic Geodetic Determination of Asperities[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10): 1701-1712. DOI: 10.13203/j.whugis20220446
    [5]WANG Jiapei, ZHANG Xinlin, ZHANG Yi, LI Zhongya, HU Minzhang, SHEN Chongyang. Analysis of Gravity Variation and Vertical Crustal Deformation at Wuhan Jiufeng Seismic Station[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 964-971. DOI: 10.13203/j.whugis20220157
    [6]JIANG Ying, LIU Ziwei, ZHANG Xiaotong, ZHANG Lina, WEI Jin. Variation Features of b-Value Before and After the 2021 Maduo Mw 7.4 Earthquake[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 907-915. DOI: 10.13203/j.whugis20220071
    [7]LI Chong, LI Jiancheng, HUANG Ruijin, TAN Li. Discussion of Crustal Flow Beneath the Eastern Tibetan Plateau and Mechanism of the Wenchuan Earthquake[J]. Geomatics and Information Science of Wuhan University, 2015, 40(6): 810-815. DOI: 10.13203/j.whugis20130655
    [8]Yin Myo Min Htwe, SHEN Wenbin, SUN Rong. Seismic Hazard Assessment in Yangon(Burma) and Its Surrounding Areas[J]. Geomatics and Information Science of Wuhan University, 2010, 35(4): 463-466.
    [9]GU Guohua, WANG Wuxing, MENG Guojie, XU Yueren. Crustal Movements Before and After the Wenchuan Earthquake as Detected by GPS Observations[J]. Geomatics and Information Science of Wuhan University, 2009, 34(11): 1336-1339.
    [10]WU Yun, SUN Jianzhong, QIAO Xuejun, WANG Hui. Applications of GPS to Current Crust Movements and Monitoring Seismic Precursors[J]. Geomatics and Information Science of Wuhan University, 2003, 28(S1): 79-82,136.
  • Cited by

    Periodical cited type(5)

    1. 郑勇,郭汝梦,刘德川. 川滇主要地震空区危险性的研究现状及思考. 中国科学:地球科学. 2024(11): 3375-3402 .
    2. Yong ZHENG,Rumeng GUO,Dechuan LIU. Present status and prospective on the seismic hazard studies of major seismic gaps in the Sichuan-Yunnan region. Science China Earth Sciences. 2024(11): 3339-3366 .
    3. 王鹏,刘静,刘小利,刘志军. GNSS在地表过程研究中的应用. 武汉大学学报(信息科学版). 2024(12): 2159-2180 .
    4. 许才军,贺克锋. 地震周期形变的大地测量研究进展和展望. 武汉大学学报(信息科学版). 2023(11): 1736-1755 .
    5. 王守文,季灵运,朱良玉,刘传金. 基于InSAR技术监测2021年青海玛多M_w7.4级地震同震形变场与断层滑动. 地球科学与环境学报. 2022(06): 1016-1026 .

    Other cited types(2)

Catalog

    Article views (1348) PDF downloads (421) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return