WU Wenhao, LI Tao, LONG Sichun. Estimation of Atmospheric Phase Contributions Using Smoothing Spline in Persistent Scatterers Radar Interferometry[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1394-1399. DOI: 10.13203/j.whugis20140346
Citation: WU Wenhao, LI Tao, LONG Sichun. Estimation of Atmospheric Phase Contributions Using Smoothing Spline in Persistent Scatterers Radar Interferometry[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1394-1399. DOI: 10.13203/j.whugis20140346

Estimation of Atmospheric Phase Contributions Using Smoothing Spline in Persistent Scatterers Radar Interferometry

Funds: 

The National Natural Science Foundation of China 41474014

The National Natural Science Foundation of China 41674032

The National Natural Science Foundation of China 41274048

the Open Research Fund Program of Hunan Province Key Laboratory of Coal Resources Clean-utilization and Mine Environment Protection E21502

More Information
  • Author Bio:

    WU Wenhao, PhD, specializes in the methods and application of InSAR. E-mail:wuwh@whu.edu.cn

  • Received Date: March 23, 2017
  • Published Date: October 04, 2017
  • The PSInSAR technique can achieve separation of PS phase components, by extracting the time-dimensional PS points based on various temporal and spatial statistical properties to get high-precision, surface deformation monitoring results. As the main error source in InSAR, atmospheric signals can be isolated from the other components of the residual phase by classical filters in the spatial and temporal domains. Optionally, after 3D unwrapping, high-pass filtering can be applied to unwrapped data in time followed by a low-pass filter in space in order to remove the remaining spatial correlated errors (atmosphere and orbit errors). Thus, when the deformation rate is large, the spectrum of various contributing factors will overlap, and the classic filter is powerless. This paper proposes methodologies which can automatically choose a smoothing parameter based on a fast robust version of a discrete smoothing spline instead of classic filter to effectively separate the phase components.
  • [1]
    Li Zhenhong, Pasquali P, Singleton A, et al. MERIS Atmospheric Water Vapor Correction Model for Wide Swath Interferometric Synthetic Aperture Radar[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(2):257-261 doi: 10.1109/LGRS.2011.2166053
    [2]
    Sousa J J, Hooper A J, Hanssen R F, et al. Persistent Scatterer InSAR: A Comparison of Methodologies Based on a Model of Temporal Deformation vs Spatial Correlation Selection Criteria[J]. Remote Sensing of Environment, 2011, 115(10):2652-2663 doi: 10.1016/j.rse.2011.05.021
    [3]
    Kampes B M. Displacement Parameter Estimation Using Permanent Scatterers Interferometry[D]. Delft: Delft University of Technology, 2005
    [4]
    杨成生, 张勤, 赵超英, 等.短基线集InSAR技术用于大同盆地地面沉降监测[J].武汉大学学报·信息科学版, 2014, 39(8):945-950 http://ch.whu.edu.cn/CN/abstract/abstract3049.shtml

    Yang Chensheng, Zhang Qin, Zhao Chaoying, et al.Small Baseline Bubset InSAR Technology Used in Datong Basin Ground Subsidence, Fissure and Fault Zone Monitoring[J]. Geomatics and Information Science of Wuhan University, 2014, 39(8):945-950 http://ch.whu.edu.cn/CN/abstract/abstract3049.shtml
    [5]
    Wegmuller U, Werner C.Mitigation of Thermal Expansion Phase in Persistent Scatterer Interferometry in an Urban Environment[C]. JURSE 2015, Lausanne, Switzerland, 2015
    [6]
    Goel K, Gonzalez F R, Adam N, et al. Thermal Dilation Monitoring of Complex Urban Infrastructure Using High Resolution SAR Data[C].IGRASS, Quebec, Canada, 2014
    [7]
    Ketelaar V B H. Monitoring Surface Deformation Induced by Hydrocarbon Production Using Satellite Radar Interferometry[D]. Delft: Delft University of Technology, 2008
    [8]
    Cuevas M, Monserrat O, Crosetto O, et al.A New Product from Persistent Scatterer Interferometry: The Thermal Dilation Maps[C]. JURSE 2011, Munich, Germany, 2011
    [9]
    Freek V L. Persistent Scatterer Interferometry Based on Geodetic Estimation Theory[D]. Delft:Delft Institute of Earth Observation and Space Systems, 2014
    [10]
    Hooper A, Zebker H A. Phase Unwrapping in Three Dimensions with Application to InSAR Time Series[J]. Journal of the Optical Society of America A Optics Image Science & Vision, 2007, 24(9):2737-2747
    [11]
    Hooper A, Segall P, Zebker H. Persistent Scatterer Interferometric Synthetic Aperture Radar for Crustal Deformation Analysis, with Application to Volcán Alcedo, Galápagos[J]. Journal of Geophysical Research Atmospheres, 2007, 112(B7):B07407 http://adsabs.harvard.edu/abs/2007JGRB..112.7407H
    [12]
    Sousa J, Hooper A, Hanssen R, et al. Persistent Scatterer InSAR: A Comparison of Methodologies Based on a Model of Temporal Deformation vs Spatial Correlation Selection Criteria[J]. Remote Sensing of Environment, 2011, 115(10):2652-2663 doi: 10.1016/j.rse.2011.05.021
    [13]
    Spaans K, Hooper A. InSAR Processing for Volcano Monitoring and Other Near-real Time Applications[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(4):2947-2960 doi: 10.1002/jgrb.v121.4
    [14]
    Takezawa K. Introduction to Nonparametric Regression[M].New York: Wiley-Interscience, 2006
    [15]
    Liebhart W, Adam N, Alessandro P. Least Squares Estimation of PSI Networks for Large Scenes with Multithreaded Singular Value Decomposition[C].EUSAR 2010, Berlin, Germany, 2010
    [16]
    Garcia D. Robust Smoothing of Gridded Data in One and Higher Dimensions with Missing Values[J]. Computational Statistics and Data Analysis, 2010, 54(4):1167-1178 doi: 10.1016/j.csda.2009.09.020
    [17]
    Strang G. The Discrete Cosine Transform[J]. SIAM Review, 1999, 41(1): 135-147 doi: 10.1137/S0036144598336745
    [18]
    Guarnieri A M, Tebaldini S. Hybrid Cramer-Rao Bounds for Crustal Displacement Field Estimators in SAR Interferometry [J]. IEEE Signal Processing Letters, 2007, 14(12):1012-1015 doi: 10.1109/LSP.2007.904705
    [19]
    Guarnieri A M, Tebaldini S. On the Exploitation of Targets Statistics for SAR Interferometry Applications[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 14(12):1012-1015
    [20]
    Agram P, Simons M. A Noise Model for InSAR Time-series[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(4):2752-2771 doi: 10.1002/2014JB011271
  • Related Articles

    [1]LI Da, QU Wei, ZHANG Qin, LI Jiuyuan, LING Qing. Landslide Displacement Prediction Model Integrating Multi-layer Perceptron and Optimized Support Vector Regression[J]. Geomatics and Information Science of Wuhan University, 2023, 48(8): 1380-1388. DOI: 10.13203/j.whugis20210703
    [2]ZHANG Yixiao, ZHAO Zhongguo, ZHENG Jianghua. Estimation of Reference Crop Evapotranspiration Under Different Combination of Meteorological Elements Using Multivariate Adaptive Regression Splines[J]. Geomatics and Information Science of Wuhan University, 2022, 47(5): 789-798. DOI: 10.13203/j.whugis20190337
    [3]XU Shan, ZOU Bin, WANG Min, LIU Ning. Performance Comparison of Artificial Neural Network and Kriging in Spatial Estimation of PM2.5 Concentration[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1642-1650. DOI: 10.13203/j.whugis20180482
    [4]XU Yanfang, LIU Wenyao, WU Bing, HUANG Min. Application of Neural Network in Color Conversion[J]. Geomatics and Information Science of Wuhan University, 2006, 31(9): 799-801.
    [5]YU Liang, BIAN Fuling. Application of Rough Set-Based Neural Network in Forest Fire Alarm[J]. Geomatics and Information Science of Wuhan University, 2006, 31(8): 720-723.
    [6]HU Yaogai, LI Wei, HU Jiming. An Artificial Neural Network with Improved Activation Function and Its Application[J]. Geomatics and Information Science of Wuhan University, 2004, 29(10): 916-919.
    [7]SHAO Lixia, HE Zongyi, AI Zixing, SONG Xiaodong. Automatic Generalization of River Network Based on BP Neural Network Techniques[J]. Geomatics and Information Science of Wuhan University, 2004, 29(6): 555-557.
    [8]XIAO Ping, LI Deren. Land Use/Cover Change Detection Based on Artificial Neural Network[J]. Geomatics and Information Science of Wuhan University, 2002, 27(6): 586-590.
    [9]Shen Weiming, Zhang Zuxun, Zhang Jianqing. Image Matching by Neural Network Based Relaxation[J]. Geomatics and Information Science of Wuhan University, 1996, 21(3): 247-251.
    [10]Huang Wenqian. Recognition of Point-shaped Map Symbols with a New Neural Network Model[J]. Geomatics and Information Science of Wuhan University, 1996, 21(1): 46-49.
  • Cited by

    Periodical cited type(1)

    1. 吴静,傅优杰,程朋根. 基于粗糙集的局部同位模式挖掘算法. 测绘通报. 2022(10): 80-85+104 .

    Other cited types(3)

Catalog

    Article views (1598) PDF downloads (315) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return