SUI Haigang, HUA Feng, FAN Yida, LIU Junyi. Road Damage Extraction from High-Resolution SAR Image Based on GIS Data and Bayes Network[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 578-583. DOI: 10.13203/j.whugis20140323
Citation: SUI Haigang, HUA Feng, FAN Yida, LIU Junyi. Road Damage Extraction from High-Resolution SAR Image Based on GIS Data and Bayes Network[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 578-583. DOI: 10.13203/j.whugis20140323

Road Damage Extraction from High-Resolution SAR Image Based on GIS Data and Bayes Network

Funds: The National Key Fundamental Research Plan of China, No. 2012CB719906; the National High Technology Research and Development Programme of China, No.2013AA122301; the National Natural Science Foundation of China, No. 41101414;Major Projects on High Resolution Earth Observation System.
More Information
  • Received Date: November 30, 2014
  • Published Date: May 04, 2016
  • Synthetic aperture radar (SAR) permits all-time, all-weather observation and strong penetration, and is widely used in disaster monitoring and evaluation, resource exploration, and military reconnaissance. However, speckle noise seriously affects the quality of SAR images, thus limiting the use of SAR image for quick access to information. In this paper, a new road damage extraction method for high-resolution SAR images based on GIS data and Bayes network is proposed. Guided by GIS data, suspected damaged roads are extracted using the fusion of level-set segmentation and an improved D1 line detection. A Bayes network is applied to further confirm real damaged roads based on multi-evidence and the observed values from suspected damage road, to eliminate the false-alarms from the SAR images. Experimental results indicate that our proposed method can extract road damage information quickly and accurately.
  • [1]
    Liu Jiahang, Yang Jianfeng, Wei Chengjie, et al. Acquisition of Earthquake Damage Information Based on Remote Sensing Technology:History, Current Situation and Trend[J]. Journal of Natural Disasters, 2004, 13(6):46-53(柳稼航,杨建峰,魏成阶,等. 震害信息遥感获取技术历史、现状和趋势[J].自然灾害学报,2004,13(6):46-53)
    [2]
    Zhang Xirui. Method Research of Damaged Road Information Extraction Based on SAR Images[D]. Chendu:University of Electronic Science and Technology of China, 2013(张玺锐. 基于SAR图像的道路损毁信息提取方法研究[D].成都:电子科技大学,2013)
    [3]
    Chen Shirong, Ma Haijian, Fan Yida, et al. Road Damage Assessment from High Resolution Satellite Remote Sensing Imagery in Wenchuan Earthquake[J]. Journal of Remote Sensing, 2008, 12(6):949-955(陈世荣,马海建,范一大,等. 基于高分辨率遥感影像的汶川地震道路损毁评估[J].遥感学报,2008,12(6):949-955)
    [4]
    Dong Ming, Zhang Haitao, Zhu Xiaokun, et al. Change Detection of Road Networks Based on Remote Sensing Image[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2):178-182(董明,张海涛,祝晓坤,等. 基于遥感影像的地图道路网数据变化检测研究[J]. 武汉大学学报\5信息科学版, 2009, 34(2):178-182)
    [5]
    Li Deren. Remotely Sensed Images and GIS Data Fusion for Automatic Change Detection[J]. International Journal of Image and Data Fusion, 2010, 1(1):99-108
    [6]
    Yu Jie, Liu Zhenyu, Yan Qin, et al. Road Network Extraction of High Resolution SAR Image in Combination with Statistics And Shape Features[J]. Geomatics and Information Science of Wuhan University, 2013, 38(11):1308-1312(余洁,刘振宇,燕琴,等. 结合统计和形状特征的高分辨率SAR影像道路网提取[J]. 武汉大学学报\5信息科学版, 2013, 38(11):1308-1312)
    [7]
    An Xiaoya, Sun Qun, Yang Yun, et al. A Method for Extracting Area Water Body from Remote Sensing Images Using Active Contour Model and Vector Data[J]. Geomatics and Information Science of Wuhan University, 2013, 38(10):1152-1157(安晓亚,孙群,杨云,等.一种利用主动轮廓模型和矢量数据的遥感影像面状水体提取方法[J]. 武汉大学学报\5信息科学版, 2013, 38(10):1152-1157)
    [8]
    Tupin F, Maiter H, Mangin F, et al. Detection of Linear Features in SAR Images:Application to Road Network Extraction[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(2):434-453
    [9]
    Peral J. Fusion, Propagation, and Structuring in Belief Networks[J]. Artificial Intelligence, 1986, 29(3):241-288
  • Related Articles

    [1]LIANG Wei, XU Xin-yu, LI Jian-cheng, HUANG Jian, LI Peng-yuan, LIU Zhan-ke, CHEN Xiao-ying. Research on Determination of Gravity Field Models in Regional Area Using Airborne Gravity Data and Reference Model[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230002
    [2]LUO Zhicai, ZHONG Bo, ZHOU Hao, WU Yunlong. Progress in Determining the Earth's Gravity Field Model by Satellite Gravimetry[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10): 1713-1727. DOI: 10.13203/j.whugis20220537
    [3]SU Yong, FAN Dongming, GU Yanchao. Gravity Field Modeling Using Energy ConservationApproach and GOCE Orbits[J]. Geomatics and Information Science of Wuhan University, 2014, 39(9): 1043-1046. DOI: 10.13203/j.whugis20130029
    [4]ZHONG Zhen, LI Fei, YAN Jianguo, SHAO Xianyuan. Comparison and Analysis on Main and Newly Lunar Gravity Field Models[J]. Geomatics and Information Science of Wuhan University, 2013, 38(4): 390-393.
    [5]WANG Zhigang, BIAN Shaofeng. Passive Location of Underwater Target Based on Local Gravity Field Model[J]. Geomatics and Information Science of Wuhan University, 2008, 33(9): 918-921.
    [6]MA Hongbin, DONG Zhongyu. GPS Level Height Manage Method Based on DEM and Gravity Model[J]. Geomatics and Information Science of Wuhan University, 2007, 32(9): 767-769.
    [7]LUO Jia, SHI Chuang, ZOU Xiancai, WANG Haihong. Comparison of Present SST Gravity Field Models[J]. Geomatics and Information Science of Wuhan University, 2006, 31(7): 594-598.
    [8]LUO Jia, JIANG Weiping, WANG Haihong, ZOU Xiancai. Precision Analysis of SST Gravity Field Model in China[J]. Geomatics and Information Science of Wuhan University, 2006, 31(3): 199-202.
    [9]TAO Benzao. Control of the Adjustment Model Errors for the Earth's Gravity Field[J]. Geomatics and Information Science of Wuhan University, 2003, 28(6): 668-670,709.
    [10]NING Jingsheng. Following the Developments of the World,Devoting to the Study on the Earth Gravity Field[J]. Geomatics and Information Science of Wuhan University, 2001, 26(6): 471-474,486.
  • Cited by

    Periodical cited type(2)

    1. 李新星,李建成,周睿,范昊鹏. 六边形网格的平均重力异常数据构建及其统计优势分析. 武汉大学学报(信息科学版). 2025(03): 507-514 .
    2. 王兵. 基于EGM2008重力场高程异常值模型在矿山测量中的应用. 世界有色金属. 2022(16): 229-231 .

    Other cited types(1)

Catalog

    Article views (1721) PDF downloads (543) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return