HE Jianhua, SHI Xuan, GONG Jian, YU Yan. Modeling the Spatial Expansion of Urban Agglomeration Considering Their Spatial Interaction:A Case Study of Wuhan Metropolitan Area[J]. Geomatics and Information Science of Wuhan University, 2016, 41(4): 462-467. DOI: 10.13203/j.whugis20140250
Citation: HE Jianhua, SHI Xuan, GONG Jian, YU Yan. Modeling the Spatial Expansion of Urban Agglomeration Considering Their Spatial Interaction:A Case Study of Wuhan Metropolitan Area[J]. Geomatics and Information Science of Wuhan University, 2016, 41(4): 462-467. DOI: 10.13203/j.whugis20140250

Modeling the Spatial Expansion of Urban Agglomeration Considering Their Spatial Interaction:A Case Study of Wuhan Metropolitan Area

Funds: The National Natural Science Foundation of China, No.41471339.
More Information
  • Received Date: January 11, 2015
  • Published Date: April 04, 2016
  • Spatial interaction in urban agglomeration is an important driving force of urbanization in contemporary China. Most of the research based on cellular automata has focused on simulating one single city, and does not factually represent the more expansive processes of urban agglomeration. How to quantify the spatial interaction between cities and combine them in a CA model is an issue when simulating the evolutionary processes of urban agglomeration. This paper proposes an urban agglomeration simulation model based on spatial interaction(UASMBSI) that is better suited for simulating the sprawl of urban agglomeration by combining an urban flow model with a CA model. The UASMBSI is applied to simulate the urban sprawl in the Wuhan metropolitan area, with more accurate simulation results than the CA model that does not account for spatial interaction. A case study not only indicated that the spatial interaction plays an important role in simulating the sprawl of urban agglomeration, but also suggestes that the UASMBSI can represent the characteristics and rules for city development, especially the expansion of urban agglomerations.
  • [1]
    Fang Yangang,Liu Jisheng.The Development and Future of Contemporary Urban Models in Western Countries[J].Human Geography, 2007, 4:6-12(房艳刚,刘继生.当代国外城市模型研究的进展与未来[J].人文地理, 2007, 4:6-12)
    [2]
    Li Xia, Ye Jia'an.Constrained Cellular Automata for Modeling Sustainable Urban Forms[J].Acta Geographica Sinica, 1999, 54(4):289-298(黎夏,叶嘉安.约束性单元自动演化CA模型及可持续城市发展形态的模拟[J].地理学报,1999,54(4):289-298)
    [3]
    Batty M, Xie Y. From Cells to Cities[J]. Environment and Planning B:Planning and Design, 1994, 21(3):531-548
    [4]
    Liu Chengliang, Li Jiangmin, Zhang Hong. Spatial Analyses on Economic and Social Elements Flowsin Wuhan Metropolitan Areas[J].HumanGeography, 2007,22(6):30-36(刘承良,李江敏,张红.武汉都市圈经济社会要素流的空间分析[J].人文地理,2007, 22(6):30-36)
    [5]
    Jiang Bo,Xiu Chunliang,Chen Cai.Analysis of Urban Flow and Model Explanation on the Urban Group in Middle-south Part of Liaoning Province[J].Economic Geography, 2008, 28(5):853-856(姜博,修春亮,陈才.辽中南城市群城市流分析与模型阐释[J]. 经济地理,2008,28(5):853-856)
    [6]
    Liu Yilun, Li Xia. Knowledge Transfer and Adaptation for Urban Simulation Cellular Automata Model Based on Multi-source TradaBoost Algorithm[J]. Geomatics and Information Science of Wuhan University, 2014,39(6):695-700(刘轶伦,黎夏.利用多源领域知识迁移CA的城市建设用地模拟[J].武汉大学学报·信息科学版,2014,39(6):695-700)
    [7]
    Yang Guoqing, Liu Yaolin, Wu Zhifeng. Analysis and Simulation of Land-use Temporal and Spatial Pattern Based on CA-Markov Model[J].Geomatics and Information Science of Wuhan University, 2007,32(5):414-418(杨国清,刘耀林,吴志峰.基于CA-Markov模型的土地利用格局变化研究[J].武汉大学学报·信息科学版,2007,32(5):414-418)
    [8]
    Chen Yimin, Li Shaoying, Li Xia, et al.Simulating Compact Urban Form Using Cellular Automata(CA) and Multi-criteria Evaluation:A Case Study in Dongguan[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2010,49(6):110-114(陈逸敏,李少英,黎夏,等.基于MCE-CA的东莞市紧凑城市形态模拟[J].中山大学学报,2010,49(6):110-114)
    [9]
    Yang Xiaoxiong, Liu Yaolin, Wang Xiaohong, et al. Land Utility Planning Layout Model Based on Constrained Conditions Cellular Automata[J]. Geomatics and Information Science of Wuhan University,2007,32(12):1164-1167(杨小雄,刘耀林,王小红,等. 基于约束性条件的元胞自动机土地利用规划布局模型[J].武汉大学学报·信息科学版, 2007, 32(12):1164-1167)
    [10]
    He Chunyang, Zhao Yuanyuan,Tian Jie,et al. Modeling the Urban Landscape Dynamics in a Megalopolitan Cluster Area by Incorporating a Gravitational Field Model with Cellular Automata[J]. Landscape and Urban Planning,2013,113:78-89
    [11]
    Pontius R, Cornell J, Hall C. Modeling the Spatial Pattern of Land-use Change with GEOMOD2:Application and Validation for Costa Rica[J].Agriculture,Ecosystems and Environment, 2001,85:191-203
    [12]
    Feng Mengzhe, He Jianhua, Tang Qinghui. Counterfactual Scenario Simulation and Evaluation of the Land-use and Land-cover Change of Jiayu County[J].Geomatics and Information Science of Wuhan University,2013,38(9):1122-1125(冯梦喆,何建华,汤青慧.土地利用变化反事实情景模拟与评价——以湖北省嘉鱼县为例[J].武汉大学学报·信息科学版,2013,38(9):1122-1125)
  • Cited by

    Periodical cited type(17)

    1. 冉烽均,龚川. 基于OpenStreetMap数据的土地利用制图. 北京测绘. 2024(02): 238-244 .
    2. 樊潇. 以建立草原公园为抓手,推动牧区草原转型升级. 中国草食动物科学. 2022(01): 61-64 .
    3. 李霞,潘冬荣,孙斌,姜佳昌,俞慧云,王红霞,杜笑村,吴丹丹. 甘肃省草地退化概况分析——基于甘肃省第一、二次草原普查数据. 草业科学. 2022(03): 485-494 .
    4. 刘志刚,关文昊,何国兴,蒲小鹏,纪童,杨军银,李强,柳小妮. 黄河源5种高寒植物光谱特征分析及识别. 草原与草坪. 2022(04): 23-30 .
    5. 申紫雁,刘昌义,胡夏嵩,周林虎,许桐,李希来,李国荣. 黄河源区高寒草地不同深度土壤理化性质与抗剪强度关系研究. 干旱区研究. 2021(02): 392-401 .
    6. 王俊奇,王广军,梁四海,杜海波,彭红明. 1996—2015年黄河源区植被覆盖度提取和时空变化分析. 冰川冻土. 2021(02): 662-674 .
    7. 朱宁,王浩,宁晓刚,刘娅菲. 草地退化遥感监测研究进展. 测绘科学. 2021(05): 66-76 .
    8. 沈贝贝,侯路路,丁蕾,范蓓蕾,毛平平,徐大伟,闫瑞瑞,辛晓平,陈金强. 数字牧场研究进展浅析. 中国农业信息. 2021(05): 1-11 .
    9. 刘炜,孙海霞,杨晓波. 基于高光谱图像的协同分层波谱识别——以兰州、榆林地区为例. 红外与毫米波学报. 2020(01): 99-110 .
    10. 韩万强,靳瑰丽,岳永寰,王惠宁,宫珂,吴雪儿,吾鲁帕·阿得尔卡里. 伊犁绢蒿荒漠草地3种主要植物光谱及植被指数改进. 新疆农业科学. 2020(05): 950-957 .
    11. 刘炜,孙海霞,杨晓波,董建民. 对数变换、导数变换的高寒草地反射光谱特征分析与识别——以那曲地区HJ-1A/HSI图像为例. 光谱学与光谱分析. 2020(07): 2200-2207 .
    12. 董元,董梦,单莹. 基于高光谱遥感的树种识别. 华北理工大学学报(自然科学版). 2020(04): 11-16 .
    13. 付晶莹,彭婷,江东,林刚,边鹏,韩昊. 草地资源立体观测研究进展与理论框架. 资源科学. 2020(10): 1932-1943 .
    14. 苏玥. 基于遥感的草地退化研究综述. 内蒙古科技与经济. 2019(06): 53-54+56 .
    15. 查向浩,王玉洁,李有文,王超,莫治新. 草地土壤碳密度研究进展. 北方园艺. 2019(09): 159-163 .
    16. 王云艳,罗冷坤,周志刚. 改进型DeepLab的极化SAR果园分类. 中国图象图形学报. 2019(11): 2035-2044 .
    17. 张良培,刘蓉,杜博. 使用量子优化算法进行高光谱遥感影像处理综述. 武汉大学学报(信息科学版). 2018(12): 1811-1818 .

    Other cited types(9)

Catalog

    Article views (1506) PDF downloads (438) Cited by(26)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return